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Chapitre 1

Présentation des résultats

Mes deux premiers résultats portent sur les marches aléatoires induites
par des mesures sur des groupes (voir Section . On étudie leur com-
portements asymptotiques, surtout en terme de leurs bords de Poisson
(voir Définition [28] Section [2.4.2)). Dans [I] (voir Chapitre[3)), on considere
les sous-groupes du groupe des homéomorphismes projectifs par morceaux
sur les entiers H(Z), présenté dans un article de Monod [Monl3]. On va
expliquer les résultats de Monod et définir ce groupe dans la Section [2.1.5]
On aborde la question si des mesures sur les sous-groupes de H(Z) sont
Liouvilles, c’est-a-dire si la marche induite sur le sous-groupe a un bord
de Poisson trivial.

Théoreme A. Pour tout sous-groupe H de H(Z) qui n’est pas localement
résoluble et toute mesure p sur H avec une espérance fini du nombre de

fins de morceauz (voir la définition de H(Z) dans Section et dont

le support engendre H comme semi-groupe, (H, u) n’est pas Liouville.

Comme H(Z) contient le groupe F' de Thompson comme sous-groupe,
cela répond en particulier & une question de Kaimanovich [Kail7, 7.A].

Dans [2] (voir Chapitref]), on s’intéresse aux questions qui sont, comme
dans [I], relatifs aux marches aléatoires induites par des mesures sur des
groupes, mais cette fois on considere les marches induites par une action
du groupe. Le bord de Poisson de cette marche est toujours un quotient
du bord de Poisson de la marche sur le groupe (voir Section . On
obtient des résultats sur les comportements asymptotiques des marches
provenant d’une classe de mesures de premier moment fini :

Théoreéme B. Considérons une action transitive d’un groupe G. Soit
S un ensemble générateur et U le graphe de Schreier associé. Soit 1 une
mesure sur G avec premier moment fini tel que la marche aléatoire induite
sur I' est transiente. Alors elle converge presque surement vers un bout
(aléatoire) du graphe.

On y trouve un corollaire qui s’applique en particulier au groupe F' de
Thompson.



Corollaire C. Considérons une action transitive d’un groupe G. Soit S
un ensemble générateur et ' le graphe de Schreier associé. Supposons que
I est transient. Alors pour tout mesure u sur G dont le support engendre
G en tant que semi groupe et qui a un premier moment fini, la marche
aléatoire induite converge presque surement vers un bout du graphe.

On peut appliquer ce corollaire a 1’action de F' sur les nombres dya-
diques. Il n’est pas difficile d’obtenir que la convergence vers les bouts
implique que les bords de Poisson des marches induites par ces mesures
ne sont pas triviaux.

Dans [3] (voir Chapitre [5) on s’intéresse aux profils isopérimétriques
des groupes, encodés par la fonction de Fglner (voir Sections et .
Cette fonction a été auparavant étudiée & équivalence asymptotique pres
(autrement dit, de facon indépendante du choix de I'ensemble générateur
fini (voir Section[2.3.4))). On obtient ses valeurs exactes pour deux exemples
classiques :

Théoreme D. La fonction de Folner sur le groupe Z2Z /27 est, pour n >
2, Fol(n) = 2122001 pour Uensemble générateur standard et Folgws(n)
2n22" pour lensemble générateur «switch-walk-switchs.

On donne aussi une description des ensembles de Fglner pour lesquels
on obtient une égalité.

On obtient de plus un résultat isopérimétrique sur le groupe de Baumslag-
Solitar BS(1,2) = (a,blbab~! = a?) en terme du bord par rapport aux
arétes.

Théoreme E. Considérons le groupe de Baumslag-Solitar BS(1,2) avec

lensemble générateur {a,b}. Alors pour tout n € N et tout F C BS(1,2)

fini tel que |F| < |Fy|, on a % > ‘?If"“, ot F,, sont les ensembles de

Fglner standards (voir Equation , et si |F| < |F,|, Uinégalité est
stricte.




Chapitre 2

Contexte historique

2.1 Moyennabilité

2.1.1 Définitions

L’origine de la notion de moyennabilité vient du paradoxe de Banach-
Tarski (ou Hausdorff-Banach-Tarski). En 1924, Banach et Tarski [BT24]
découpent la boule de R? en un nombre fini de parties, puis, en y appli-
quant des isométries, ils reconstruisent deux boules chacune identique a
la premiere. Leur preuve est inspiré par un résultat similaire de Hausdortf
sur la sphere. Cela est contraire & l'idée intuitive de volume, et, claire-
ment, les morceaux ne sont pas Lebesgue-mesurables. Pour comprendre la
structure qui permet cela, étant donnée une action (& droite) d’un groupe
sur un espace, on définit :

Définition 1. Soit un groupe G qui agit sur un ensemble X. On dit que
I’action est paradoxale s’ils existent deux entiers positifs m et n et des
sous-ensembles Ay, As, ..., A, B1,..., B, de X deux-a-deux disjoints,
ainsi que g1, 92, .., Gm, P1, ..., hn € G tels que X = J(A4i)gi = U(B;i)h;.

Avec cette notation, le paradoxe de Banach-Tarski dit que l’action
des isométries de R3 sur une boule est paradoxale. Cette propriété est
reliée a la structure du groupe des isométries de R3. En effet, définissons
qu'un groupe est paradoxal si I’action sur lui-méme par multiplication a
droite ’est. Alors pour une action paradoxale de G sur X, pour un point
x € X, en prenant des ensembles obtenus comme images inverses d’un
décomposition paradoxale sur X par ¢ — x.g on obtient une décomposition
paradoxale sur G. Le groupe est donc paradoxal, et on peut aussi obtenir
un résultat inverse partiel (voir [Wag93]) :

Proposition 2. Si G est paradozal et agit librement sur X, alors cette
action est paradozale.

On peut donc, comme remarqué par John von Neumann, chercher une
explication du paradoxe dans les propriétés du groupe des isométries de
R3. Cela donne une premiere définition de moyennabilité :
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Définition 3. Un groupe est moyennable si et seulement s’il n’est pas
paradoxal.

Remarquons qu’on parle ici de moyennabilité des groupes dénombrables.
Des notions plus générales existent pour les groupes topologiques.

Plus généralement, une action est moyennable si et seulement si elle
n’est pas paradoxale. Aujourd’hui il existe des nombreuses caractérisations
de la moyennabilité (voir [Barl8],|[CSGAIH99],[|Gre69],[Wag93]). Commengons
par la définition canonique de moyennabilité, donnée (sur les groupes) par
John von Neumann. Les notations qu’on utilisera sont inspirées par le livre
de Juschenko en préparation [Jus15| et le survol de Bartholdi [Bar18]. Soit
G un groupe agissant a droite sur X. Une moyenne (ou moyenne [*;
«mean» en anglais) sur X est une fonctionnelle linéaire p sur [°°(X) qui
vérifie u(xx) = 1, #(0) = 0 et u(f) > 0 pour chaque f > 0. Pour une
fonction f sur X et g € G, on dénote par Ty(f) la fonction z — f(z.g~t)
pour tout g € G. Une moyenne sur X est invariante (& droite) si pour
chaque f € [*°(X), g € G,

w(Tyf) = p(f)-

Définition 4. Un groupe G (respectivement une action G ~ X) est
moyennable §'il (respectivement elle) admet une moyenne invariante sur
G (respectivement sur X).

Remarquons qu’en considérant I’action & gauche par ¢g—!, une moyenne

invariante & droite devient invariante & gauche. Le choix de coté est donc
une convention que chaque auteur choisit. En passant par la dualité entre
fonctionnelles et mesures, on a de maniére équivalente :

Définition 5. Un action G ~ X est moyennable si et seulement s’il
existe u : P(X) — [0, 1] qui vérifie u(X) =1, u(@) =0,

1(AU B) = u(A) + u(B)
pour ANB =0 et

n(E.g) = p(E)
pour tout g € G, F € P(X).

Une telle «mesure» est dite moyenne sur les sous-ensembles de X.
Il est assez claire que 'existence d’une décomposition paradoxale im-
plique la non-moyennabilité. Le sens inverse a été montré pour une ac-
tion de groupe sur lui-méme par multiplication par Tarski [Tar3§|. Cela
montre I’équivalence entre Définition 4] et Définition [3| pour les groupes.
On présente maintenant plusieurs définitions équivalentes :

Théoreme 6. Considérons une action G ~ X. Alors on a une équivalence
entre :

1. G ~ X est moyennable.



2. (Condition de Reiter [Rei68, Chapitre 8]) Pour chaque E C G
fini et € > 0, et pour p > 1 (p = 1), il existe ¢ € IP(X) tel que
1Ts¢ = ollp < el|dllp pour tout s € E.

3. (Condition de Fglner [Fol55]) Pour chaque E C G fini et € > 0,
il existe un ensemble fini ' C X (appelé ensemble de Folner) qui
vérifie :

|F.s A F| < ¢|F| pour tout s € E.

Remarquons que pour un groupe de type fini, il suffit de fixer un
ensemble générateur fini pour E. Remarquons aussi que pour ces deux
définitions on n’a pas besoin de I’axiome du choix. Par contre, la Définition [4]
avec les moyennes ne serait pas équivalente sans cet axiome. Méme sur le
groupe infini le plus simple, Z, on ne peut pas construire une moyenne in-
variante sans utiliser des ultrafiltres. Remarquons les exemples de groupes
moyennables qu’on voit ici : les groupes finis et les groupes cycliques (c¢’est
immédiat par exemple en utilisant la condition de Fglner).

Proposition 7 (Critere de Kesten [Kesbh9]). Une action G ~ X est
moyennable si et seulement si pour une (toute) mesure symétriqgue non-
dégénérée p sur G, le rayon spectral

p(p,z) = limsup V/p,(x,x)

n—oo

de la marche induite sur X est 1.

Ici pp(z,x) est la probabilité d’étre au point = aprés n pas en com-
mencant de . On va préciser les termes relatifs aux marches aléatoires
dans la Section

A partir d’ici on va se concentrer sur les groupes moyennables plutot
que les actions moyennables. On y retrouve une critére tres utilisé. Considérons
un groupe G de type fini. Soit S une ensemble générateur qui ne contient
ni 'élément neutre, ni deux éléments qui sont mutuellement inverses. On
s'intéresse aux mots sur 'alphabet S U S~!. Comme on s’intéresse aux
propriétés de groupe, on se permet de supprimer des combinaisons zz ™!
ou x 'z, ce qui est notre action de réduction. On dit qu’un mot qui ne
contient pas de tels combinaisons est un mot réduit. On dénote =, le
nombre de mots réduits de longueur au plus n sur SUS™! qui sont égaux
a I’élément neutre comme éléments de G.

Une autre fagon équivalente de définir cela est de considérer le groupe
libre Fjg sur S (voir Section [2.1.3). Il y a un morphisme de groupes
naturel de F' vers G - il suffit d’associer a chaque élément de S dans F
le méme élément de S dans G. Si N est son noyau, 7, est la taille de la
boule de rayon n dans N.

Proposition 8 (Critere de co-croissance de Grigorchuk [Gri77]). G est
moyennable si et seulement si

nlLIQO Y = 2|5 — 1.
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Ce critere n’est pas difficile & prouver en utilisant le critere de Kesten,
mais sa formulation algébrique le rend tres utilisable. On va approfondir
sur ses applications dans la Section [2.1.3]

2.1.2 Groupes élémentairement moyennables

Il suit directement des définitions que la moyennabilité est préservée
par plusieurs opérations :

Proposition 9. Tout sous-groupe H d’un groupe moyennable G est moyen-
nable.

Proposition 10. Soit G; une suite de groupes moyennables telle que
G; C Gig1 pour chaque i. Alors G = U?io G, est moyennable.

Corollaire 11. Un groupe est moyennable si et seulement si chaque sous-
groupe de type fini lest.

Proposition 12. Si G est moyennable et N est un sous-groupe normal,
alors G/N est moyennable.

Proposition 13. Si N est un sous-groupe normal de G, et N et G/N
sont moyennables, alors G est moyennable.

Avec le fait que les groupes cycliques sont moyennables, on obtient
déja que les groupes résolubles sont moyennables. De facon générale,
les groupes qu’on peut obtenir & partir des groupes cycliques en appli-
quant ces propositions forment la classe des groupes élémentairement
moyennables. Comme on verra dans la Section [2.3.1] les groupes de
croissance sous-exponentielle sont moyennables. On obtient une classe
plus grande de groupes moyennables : ¢’est les groupes sous-exponentiellement
moyennables, qui sont les groupes obtenus & partir des groupes de
croissance sous-exponentielle en appliquant ces opérations. Ce ne sont
encore tous les groupes moyennables comme montré par Bartholdi et
Virdg [BV05]. On discutera sur leur résultat dans la Section (le
groupe qu’ils utilisent comme exemple est définit dans la Section [2.2.3)).

2.1.3 Sous-groupes libres

Considérons le groupe engendré par deux éléments a et b tel que chaque
mot réduit non-trivial sur ces deux éléments ne donne pas l'identité. De
facon équivalente, on peut le considérer comme ’ensemble de mots réduits
muni de la concaténation (puis réduction). On appelle cela le groupe libre
non-abélien & deux générateurs, et on le dénote Fs.

Lemme 14. Le groupe Fs est paradozal.

On va exhiber une décomposition associée. Prenons les quatre en-
sembles A1, ..., A4 des mots réduits qui commencent par a, a~!, bet b~!
respectivement. Autrement dit, A; = {azox; ...z, sous forme réduite, n €

N,z; € {a,a"1,b,b71}}, etc. Alors A;Ua.As = F. Voir sur Figureson
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graphe de Cayley (voir Déﬁnition avec Aj représenté par des lignes en
tirets (et en rouge si vous avez imprimé en couleur) et Ay par des lignes
pointillées (bleus).

0
'
< !
M&o b :h a ] .
\ '
b ' 22
a,’Eﬂ‘;’l < a-! < [ a . ' oLLa ' _a &
Y > >
: p1 ' p1oe
> & 1 - i &
< b 1 :
b ° v ° [ b
Abg 1 AL b &
SR . - L e b1 Tt x_a n
[ . (s b1 .b . (s
- '

_ S 2
p—1 B %b—l
Y
"

FIGURE 2.1 — Graphe de Cayley de F5

De maniére similaire, A3 U b.A4 donne aussi le groupe tout entier.
En ajoutant I’élément neutre dans un de ces ensembles, on obtient une
décomposition paradoxale. D’apres Proposition[d] cela implique que chaque
groupe qui contient un sous-groupe libre est non-moyennable. Cela donne
la classe la plus évidente d’exemples de groupes non-moyennables (on
peut en penser comme des groupes élémentairement non-moyennables).
Le groupe des isomorphismes de R? appartient & celle-ci, ¢’est-a-dire qu’il
contient un sous-groupe libre. Par contre, trouver un exemple de groupe
non-moyennable en-dehors de cette classe n’est pas facile - la question
de leur existence est restée ouverte pendant 30 ans. Elle a été formulée
par Day dans les années 1950, ce qui était appelé le «probleme de von
Neumann-Day». Le premier exemple a été donné en 1980 et on en parlera
en détail dans la prochaine Section Malgré le quantité énorme de
définitions équivalentes, & notre connaissance, jusqu’a récemment, toutes
les (premieres) preuves de non-moyennabilité de groupes sans sous-groupe
libre sont faites avec le critere de co-croissance (voir Proposition [§)). Dans
la Section [2.1.5 on va présenter des résultats autour d’un article qui
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change cela.

Plus généralement, on ne sait méme pas si avoir un sous-groupe libre
est une condition géométrique (on expliquera ce que cela veut dire dans
la Section . Cela conduit & une des grandes questions ouvertes dans
le domaine - donner une condition de moyennabilité algébrique.

Les deux approches les plus connues pour chercher des sous-groupes
libres sont le lemme du ping-pong et alternative de Tits [Tit72] :

Théoreme 15 (Alternative de Tits). Soit G un sous-groupe de G L, (K)
pour n > 1 et K un corps de caractéristique zéro. Alors soit G a un
sous-groupe libre non-abélien, soit G a un sous-groupe résoluble d’indice
fini.

Plus généralement, il y a une fonction n — A(n) telle que, indépendamment
de K, si GG n’a pas de sous-groupe libre, il a un sous-groupe résoluble d’in-
dice A(n). Le résultat est aussi correct si K est de caractéristique fini, mais
seulement pour les sous-groupes de type fini. Des théorémes similaires ont
été démontrés pour d’autres groupes, et on dit qu’une classe de groupes
C satisfait I'alternative de Tits si tout groupe de la classe possede soit un
sous-groupe libre, soit un sous-groupe résoluble d’indice fini. Par exemple,
Karrass et Solitar [KS71, Théoreme 3] ont montré que pour un groupe G
défini par une seule relation, soit il contient un sous-groupe libre, soit il
est résoluble. Explicitons ce que signifie étre défini par une seule relation.
Pour cela, on a besoin d’un lemme. Considérons un groupe G engendré
par un ensemble S. Il y a un morphisme naturel du groupe libre non-
abélien F|g sur S vers GG. On peut donc écrire G comme un quotient de
ce groupe (par le noyau du morphisme). On a donc :

Lemme 16. Tout groupe G est un quotient d’un groupe libre. De plus, si
G est de type fini, il est quotient d’un groupe libre sur un nombre fini de
générateurs.

On considere alors un groupe comme le quotient Fj/N d'un groupe
libre F} par un sous-groupe normal N. Si dans une telle représentation,
N est engendré par un nombre fini d’éléments comme sous-groupe nor-
mal, alors on dit que Fi/N est de présentation finie. Si de plus il est
engendré comme sous-groupe normal par un seul générateur A, on dit
que Fj/N est défini par une relation. On écrit Fy,/N = (z1,...,x;|A) (ol

S ={z1,...,z}). Plus généralement, si Ay,..., A, sont des éléments de
F}, (dites aussi relations sur Fy), on dénote par (xy,...,xg|A41,...,4,) le
groupe Fj /N’ ou N’ est le sous-groupe normal engendré par Ay,..., A,.

On les écrit parfois comme des égalités : par exemple pour le Théoreme
on a défini BS(1,2) = (a,blbab~! = a?). Cela veut dire que c’est le groupe
{a,blbab~ta=2).

Un autre exemple d’alternative de Tits est donné par les sous-groupes
des groupes modulaires des surfaces de Riemann [Iva84l McC85]| (c’est-a-
dire les classes d’isotopie des difféomorphismes). C’est aussi vrai [Par92]
pour les groupes fondamentaux des variétés M fermées, orientables et
irréductibles de dimension 3 telles que Hy(M,Z/pZ) > 3 pour un p pre-
mier, ainsi que pour [Gro87, 8.2.F| les sous-groupes de groupes Gromov
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hyperboliques. Pour une liste plus complete, voir le livre de Pierre de la
Harpe [dIHOO, 11.42].

2.1.4 Groupes de torsion bornée

En 1902 William Burnside demande si chaque groupe de type fini de
torsion est fini, c’est-a-dire §'il existe un groupe G infini de type fini tel que
pour chaque g € G il existe p > 0 tel que g? = Id. En 1964 la conjecture
est réfutée. Ici on s’intéressera au probleme de Burnside borné : existe-t-il
un nombre entier p et un groupe infini de type fini G tel que g? = Id pour
chaque g € G7 Cette question se raméne aux groupes de Burnside libres,
qui sont des objets universels (dans un certain sens). On définit B(m,n)
comme le quotient de F, par le sous-groupe normal engendré par les g"
pour g € F,,. C’est un groupe de torsion n qui est universel pour tous
les groupes de torsion n engendrés par au plus m éléments. Le probleme
de Burnside borné demande alors s’il y a des groupes de Burnside libres
infinis, et lesquels. En 1968, Adyan et Novikov [NA68| démontrent que
B(m,n) est infini pour m > 2 et n > 4381 impaire.

Ol’shanskii développe leur méthode et en 1980 [OI’80b] donne le pre-
mier exemple de groupe non-moyennable sans sous-groupe libre.
Plus tard dans la méme année, il présente aussi des groupes de torsion
non-moyennables [OI'80a]. On obtient méme une propriété plus forte :
tous leurs sous-groupes sont cycliques. C’est ce qu’on appelle les monstres
de Tarski. Puisqu’un groupe non-moyennable est toujours infini, cela im-
plique qu’un nombre infini de groupes de Burnside sont infinis.

En 1983 Adyan [Ady83] montre que B(m,n) pour m > 2 et n > 655
impaire est non-moyennable (et donc aussi infini). Dans [Gri80] Grigor-
chuk décrit un groupe de torsion infini moyennable (voir Section .
Mais c’est une question ouverte [Sha06| de savoir si un groupe de Burn-
side peut étre infini et moyennable. Plus généralement, on ne sait pas si
un groupe peut étre infini, moyennable et de torsion bornée.

Un autre exemple connu de groupe non-moyennable sans sous-groupe
libre est donné par Ol’'shanskii et Sapir [OS03| quand ils décrivent pour
la premiere fois un groupe non-moyennable sans sous-groupe libre de
présentation finie.

2.1.5 La classe de groupes H(A) d’un article de Monod

Monod [Monl13| construit une classe de groupes non-moyennables sans
sous-groupe libre d’homéomorphismes projectifs par morceaux H(A), oit
A est un sous-anneau de R. Considérons I'action de PSLy(R) sur la ligne
projective réelle P1 = P}(R). Cette derniere peut étre muni d’une topo-
logie canonique qui fait d’elle un cercle : par exemple, en la décrivant
comme le quotient de S' par la relation d’équivalence & ~ —z. On dénote
G le groupe des homéomorphismes de P! qui sont dans P.SLo(R) par mor-
ceaux, avec un nombre fini de morceaux et H la sous-groupe de G des

éléments qui fixent <1> € R2. Ce point devient le point co si on considere

0
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ar+b
cr+d

la description de P* comme RU{0o}, et 'action comme <z Z) X =

(avec les conventions naturelles pour Iinfini).

Soit A un sous-anneau de R. En particulier, on s’intéresse au cas
oit A est dénombrable et dense. Soit P4 C P! I’ensemble des points
fixes d’éléments hyperboliques de PSLy(A). On définit G(A) comme
le sous-ensemble de G des éléments qui sont dans PSLy(A) par mor-
ceaux, avec les extrémités des morceaux dans P4. On obtient le groupe
H(A) = G(A) N H, c’est-a-dire les éléments de G(A) qui fixent le point
infini. Ils fixent donc la ligne réelle, et on peut y penser comme des
homéomorphismes de R projectifs par morceaux. Monod obtient :

Théoreme 17. Le groupe H(A) n’est pas moyennable si A # Z.

Théoreme 18. Le groupe H ne contient pas des sous-groupes libres non-
abéliens. Alors H(A), comme sous-groupe, n’en contient pas non plus pour
chaque A.

Il vaut de noter que le Théoreme est obtenu en comparant 1’ac-
tion de H(A) avec celle de PSLs(A). Pour H(Z), il est une question
ouverte s’il est moyennable, et il contient le groupe de Thompson F' (voir
Définition comme sous-groupe (voir [KKL19]).

On retrouve des autres groupes intéressants dans cette classe. Lodha [Lod20)]

montre qu’'un certain sous-groupe de H (Z[@]) est de type Fi (C’est-a-

dire, il existe un CW-complexe X connexe asphérique dans chaque dimen-
sion avec un nombre fini de cellules dans chaque dimension tel que 71 (X)
est isomorphe au sous-groupe). Ce sous-groupe était construit avant par
Moore et Lodha [LMI16] comme un exemple de groupe de présentation
finie non-moyennable sans sous-groupe libre. Il n’a que trois générateurs
et 9 relations, bien moins que l’exemple de Ol’shanskii-Sapir [OS03]. Il
est le premier exemple de groupe de type Fi non-moyennable sans sous-
groupe libre. Plus tard, Lodha [Lod16] montre aussi que les nombres de
Tarski (le nombre minimal de pieces dans une décomposition paradoxale)
des groupes H(A) sont bornées par 25.

2.1.6 Produits en couronnes

On présente ici une construction commune de groupes. On s’en intéresse
en particulier dans [3] (voir Chapitre [f). Pour deux groupes A et B, no-
tons B les fonctions de A sur B tels que tout sauf un nombre fini de
points valent Idp.

Définition 19. Le produit en couronne A B est le produit semi-
directe de A sur B ou A agit sur B par translations.

Si on écrit les éléments comme (a, f) ot a € A et f € BX  le produit
est done (a, f)(d, f') = (ad',z — f(2)f'(za~))).

Pour un ensemble générateur S de A et S’ de B, on a un ensemble
générateur standard de A B. 1l est formé des (s,I) pour s € S (ol
Ig(z) = Idp pour tout x € A), ainsi que les (Ida,d5, ) pour s € S’
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ol 5%/\ (Ida) = §' et 6‘;'% (x) = Idp sinon. On peut vérifier que quand
on multiplie (a, f) & droite avec le premiere type d’élément, on obtient
(as, f), et avec le deuxieme type, on change le valeur de f au point a par
/
s’

Similairement, étant donne des ensembles de Folner F4 et Fg sur A
et B, cela donne des ensembles de Fglner standards pour A B. Soit

F ={(a, f)la € Fa,supp(f) C Fa,Vz: f(z) € Fp}.
Alors (voir Section pour la définition de OF) :

OF ={(a, f)|la € OF4,supp(f) C Fa,Vz : f(x) € Fp}
({(a, f)la € Fa,supp(f) C Fa, f(a) € 9Fp}.

Ona|F| = |Fa||[Fg|Fal et |OF| = |0F 4| |Fp|Fal+|Fa||Fp|F4 =10 Fg|.
Donc

OF| _ [oFal _ |0Fs
]~ Tl " TP

2.2 Graphes de Cayley et Schreier

2.2.1 Définitions et résultats généraux

Définition 20. Soit G un groupe de type fini et S un ensemble générateur.
Son graphe de Cayley est I' = (V,E) avec V=G et E ={(g,98) : g €
G,s e S}

Définition 21. Soit G un groupe de type fini et S un ensemble générateur.

1. Un graphe de «coset» de Schreier est défini par rapport & un sous-
groupe H. Ces sommets sont les classes Hg, g € G, et ces arrétes
sont les couples de la forme (Hg, Hgs) pour g € G, s € S.

2. Un graphe d’action de Schreier est défini par rapport & une action
transitive & droite de G, soit sur X. L’ensemble de sommets est X,
et les arrétes sont les couples de la forme (z, xs) pour x € X, s € S.

3. L’ensemble de graphes de coset de Schreier et les graphes d’action
de Schreier sont les mémes. On appelle un tel graphe un graphe de
Schreier.

Il y a une application évidente des graphes de coset de Schreier avec
un sommet marqué vers les graphes d’action de Schreier avec un sommet
marqué. Il suffit de considérer I’action de G sur les classes de H par mul-
tiplication (& droite). Son inverse n’est pas compliqué non plus : il suffit
de considérer le sous-groupe des éléments qui fixent le sommet marqué o,
dit stabilisateur et noté St(o).

Les graphes de Schreier généralisent les graphes de Cayley. Effective-
ment, le graphe de Cayley d’un groupe G est juste le graphe de Schreier
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par rapport au sous-groupe trivial {e}, ou par rapport a ’action du groupe
sur lui-méme par multiplication.

Il est connu que chaque graphe régulier de degré paire est un graphe
de Schreier [Gro77]. Pour une preuve détaillée du cas infini, voir [Leel6l,
Theorem 3.2.5]. Ce n’est_pas le cas pour les graphes de Cayley. Comme
on verra dans la Section , les graphes de croissance n¢ ot d n’est pas
entier ne sont pas des graphes da Cayley.

2.2.2 Bouts des graphes

Définition 22. Considérons une espace topologique X. Pour un en-
semble compact K C X on dénote mp(X \ K) I’ensemble des composantes
connexes de X \ K. Il y a un ordre naturelle défini par K; < Ko si et
seulement si K; C Ky. On en obtient un morphisme ;9 : mo(X \ K2) —
mo(X \ K1) qui envoi chaque composante connexe dans une composante
connexe qui la contient. Cela forme une systeme inverse indexé par K C X
(voir [RS09, Section 3.1.2]). L’espace des bouts est la limite inverse :

lim mo(X \K) ={(zx) € [ m(X\ K)7asrs = a, Ka C Kg}.
KCcX KcX
compact compact

Dans le cas d’un graphe, de fagon équivalent, si on prends une suite
exhaustive croissante pour l'inclusion d’ensembles finis K1 C Ko C ...,
un bout est représenté par une suite décroissante Uy O Us D ... de
composantes connexes de X \ K.

Par exemple, dans un arbre ’ensemble des bouts est représentable par
les branches infinies. Les graphes de Cayley de Z et Fy sont des arbres,
et ils ont donc deux bouts et un nombre infini de bouts respectivement.
Par contre, considérons le graphe de Cayley Z¢ pour d > 2. Pour chaque
K fini, Z%\ K a exactement une composante connexe infini. Ce graphe a
donc un seul bout.

Dans le cas des graphes de Cayley, le nombre de bouts est bien classifié
par Stallings [Sta68| [Sta72| (voir [Geo08, Sections 13.5 et 13.6]). Il était
connu avant lui que le nombre des bouts est 0, 1,2 ou co, et que les groupes
avec 0 bouts sont les groupes finis, et les groupes avec 2 bouts sont les
groupes virtuellement Z. Il démontre qu’un groupe a un nombre infini de
bouts si et seulement s’il peut étre écrit comme produit libre amalgamé
ou comme une extension HNN sur un groupe fini.

2.2.3 Exemples
Le groupe de la Basilique

Notons 7 l’arbre infini binaire. Ses sommets sont les suites finies de
{0,1}, la suite vide étant la racine. On considere des automorphismes sur
lui. Comme ils préservent la racine (car il est le seul sommet de degré 2),
ils préservent - et donc permutent - chaque niveau. Un automorphisme est

16



11100

11010

10011

OIH o mn

10111

10110 01010

11110 o110 00110 0

01000

01001

10010

11000

11101

FIGURE 2.2 — Le graphe de Schreier & niveau 5 du groupe de la Basilique et son
espace limite par Bondarenko, D’Angeli et Nagnibeda

donc défini de facon unique par le choix, sur chaque sommet, de permuter
ou non les deux fils. Un sous-groupe de Aut(7T) est appelé un groupe
agissant sur un arbre enraciné binaire. On s’intéressera & un tel groupe,
le groupe de la Basilique. Il est défini comme le groupe engendré par deux
éléments a et b définis par récurrence sur le longueur k de la suite :

(I(O,jQ, s 7]/€) = (07j2> v 7]k’) b(07j27 cee a]k) = (]-a a(jQ’ oo 7]k))
a(l, g2, jk) = (1,b6(j2, -, gw)) | 0(L, 02, Jk) = (0,2, -+ k)
Il est aussi le groupe des monodromies itérées du polynéme 22 —1 (voir
le survol par Bartholdi, Grigorchuk et Nekrashevych [BGNO3|; livre de
Nekrashevych [Nek05, Chapitres 3 et 5|) ; les graphes de Schreier induits
au niveau n convergent, quitte & normaliser la distance, vers 'ensemble de
Julia du polynéme. Le groupe doit son nom & cet ensemble : il ressemble
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la Basilique de San Marco a Venise. Une visualisation de Bondarenko,
D’Angeli et Nagnibeda [BDNI7] est présenté dans Figure [2.2]

Le groupe Dl Zo

On présente ici un exemple auquel on s’intéresse dans [3] (voir Cha-
pitre . On commence par définir une généralisation du produit en cou-
ronne (voir Section [2.1.6)) :

Définition 23. Considérons un groupe A qui agit sur un ensemble X.
Notons cette action a. Le produit en couronne permutationnel (res-
treint) A, B est le produit semi-direct de A sur B&X) ou A agit sur B
par translation.

Remarquons qu’un produit en couronne est un produit en couronne
permutationnel pour 'action du groupe sur lui méme par multiplication.
Considérons le groupe diédral infini Dy, défini par

Dy = (a,z|2? = e,zax = a™1).

De fagon équivalent, il est le produit semi-direct de Zo = Z/27 sur Z,
avec I’élément non-neutre de Zo agissant en tant que l'inversion sur Z.
Tout élément s’écrit soit a™, soit za™. On considére un autre ensemble
générateur : {x,y} avec

Y = Ta.

Alors zaz = a~! devient (za)? = e et donc Dy, est aussi le produit libre
de Zs avec lui-méme.

FIGURE 2.3 — (Une partie du) Graphe de Schreier de D, pour le sous-groupe
{e,x} avec x (pointillée, noire), y (bleue) et a (fine, rouge). On va considérer
Pensemble générateur {z,y} (sans les lignes rouges)

Considérons le sous-groupe {e,z} et le graphe de Schreier de coset
qu’il définit (avec ensemble générateur {x,y}). Chaque sommet est de
la forme {g,zg}, et il peut donc s’écrire comme {za",a"} pour un n €
Z. Si on représente les sommets avec ces entiers, le graphe est dessiné
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dans la Figure Avec 'ensemble générateur {z,y}, il est un rayon :
0,1,-1,2,-2,3,-3,....

On s’intéressera & 'action a de Do que cela définit (voir Définition [21]),
et le produit en couronne permutationnel Dyl Zo qu’on y obtient. On
expliquera dans la Section [2.3.5]que cela donne un exemple ou la fonction
de Folner est similaire a la fonction de croissance.

2.3 Profiles géométriques

2.3.1 Croissance des groupes

Pour un groupe G de type fini, et un ensemble S fini générateur, on
dénote V (k) = V(G, S, k) la taille de la boule autour de I'identité dans
le graphe de Cayley associé. On dénote w(G, S) = limsup, /V (G, S, k).
Si w(@G,S) > 1, on dit que G est de croissance exponentielle (remar-
quons que cela ne dépend pas du choix de S fini; par contre le valeur
exact de w(G, S) si). Si V(G, S, k) est majorée par un polynoéme, on dit
que G est de croissance polynomiale. Sinon, si V' croit plus vite que
chaque polyndéme mais plus lentement que chaque exponentielle, on dit
que le groupe est de croissance intermédiaire. Il n’est pas évident de
construire un tel groupe. On exprimera un exemple dans la prochaine
Section 2.3.2

Les groupes de croissance polynomiale sont bien classifiés par un résultat
célebre de Gromov [Gro81]. Il obtient qu’ils sont exactement les groupes
virtuellement nilpotents. En particulier, leur croissance vérifie que V (n)n =%
converge pour l'entier d = ), irang(G;/Git1) ol (G;) est la suite cen-
trale descendante. Voir Bass [Bas72], Guivarc’h [Gui73] pour V(n) entre
Cin? et Con® et Pansu [Pan&3al pour la convergence.

Si un groupe n’est pas de croissance exponentielle, on peut montrer
qu’une sous-suite de boules autour de l’identité forme des ensembles
de Fglner. En effet, si w(G,S) < 1+ ¢, alors a partir d’un certain k,
V(G,S,k) < (1+ €)*. Cela implique que 'on peut en extraire une sous-
suite de boules telle que le bord est toujours plus petit que € fois 'intérieur.
En procédant par extraction diagonale, on obtient le résultat. Il est donc
moyennable. Par contre, 'inverse n’est pas vrai. Considérons par exemple
le produit en couronne ZQ Zy (ot Zg = Z/27). 11 n’est pas difficile de
voir que les éléments (1,0) et (1,53) (avec les notations de Section
forment un sous-semi-groupe libre. La croissance de Z Zs est donc au
moins 2" pour un ensemble générateur qui les contient. On a donc une
croissance exponentielle. Par contre il est moyennable, et méme résoluble.
Comme on a vu dans la Section 2.1.6] un exemple d’ensembles de Fglner
pour ce groupe est 'ensemble F,, des (k, f) tels que supp(f) C [1...n]
et k € [1...n]. Ils vérifient Ilalf:‘l = 2 La question suivante reste ouverte.
Peut-on choisir pour chaque groupe moyennable certaines boules comme
ensembles de Fglner ? Si 'on sait que la croissance est intermédiaire ou
polynomiale, c’est vrai, mais dans ce cas la question se pose de savoir si
on peut choisir toutes les boules comme des ensembles de Fglner.
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2.3.2 Groupe de Grigorchuk

Pour plus de références sur cette section, voir le livre de Pierre de
la Harpe [dIH00, Ch. VIII|. On rappelle quelques définitions de la Sec-
tion 2.2.3] Notons 7 D’arbre infini binaire. Ses sommets sont les suites
finies de {0, 1}, la suite vide étant la racine. On considére des automor-
phismes sur lui. Comme ils préservent la racine (car il est le seul sommet
de degré 2), ils préservent - et donc permutent - chaque niveau. Un au-
tomorphisme est donc défini de fagon unique par le choix, sur chaque
sommet, de permuter ou non ses deux fils. Notons a 'automorphisme qui
permute les deux branches principales et rien d’autre. Autrement dit,

a‘(jl?j?a .+ 7]k) = (]Tl7j27j3> s 7.]1:)

oll j = 1—j. On définit aussi b, c et d par récurrence. L’automorphisme b
va agir comme a sur le sous-arbre & gauche (celui dont les sommets sont
de la forme (0, j2,j3, ..., jx)) et comme ¢ & droite. De méme, ¢ = (a,d),
mais d = (1,b). Formellement, :

b(0>j2aj37 cee 7]]4:) = (07]35j37 ce. 7.]]9)
b(1>j21j37 s 7]/6) = (17 C(j2>j3a s 7,7743))

C(Ovj27j3a cee 7.]]9) = (07]37j37 ce. 7]k)
C<1>j27j37 v 7.7k) = (17 d(j2>j3a s 7,7k’))

d(O’j25j37 cee 7]k) = (O’j2aj37 cee 7]k)
d(17j27j37 v 7.]/€) = (17b(j21j37 s 7]16))

Le groupe de Grigorchuk (ou premiere groupe de Grigorchuk) est
alors I' = (a, b, c,d) (le sous-groupe de Aut(7) engendré par ces quatre
éléments). Notons qu'on a a? = b> = ¢> = d> = 1 et aussi bc = cb = d.
Cela veut dire que pour chaque mot sur a,b,c,d qui est de longueur
minimale pour ’élément du groupe qu’elle représente, elle est de la forme
ari1axy ... TEG, GT1 ... Tk, T14 ... TEA OU T1G ... T POUr X1,...,T) parmi
b, c,d. Notons Str(k) le sous-groupe qui fixe les k premiers niveaux. Il
agit séparément sur chaque sous-arbre défini en prenant un sommet de
profondeur k£ comme racine. On peut vérifier que la restriction donne aussi
un élément de I'. On a donc des morphismes naturels Str(k) — T'%".
Considérons en particulier Stp(3). D’apres les définitions on peut voir
que pour chaque élément parmi b, c,d, on peut trouver une branche sur
laquelle cet élément agit trivialement jusqu’a cette profondeur. On peut
utiliser cela et I’écriture ci-dessus pour démontrer :

Lemme 24. Considérons v € Str(3) et soient 71, ...,7s les restrictions
de v sur les sous-arbres. On a donc :

i 3
Z vl < ZM +8.
=1
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On sait que, pour tout € > 0, V(k) = V(T', {a,b,c,d}, k) < (w([',{a,b,c,d})+
€)* a partir d'un certain rang (par définition de limite supérieure). Si
on applique & cela ce Lemme et le fait que Str(3) est d’indice 27
(voir [dIHOO, VIII.22]), on obtient

V(k) < DP(k)(w + ¢) 1 (k+27-1)+8

pour une constante D et un polynéome P. Cela implique que w < (w—i—s)%.
On a donc w(T, {a,b,c,d}) = 1 et le groupe de Grigorchuk n’est pas de
croissance exponentielle (il est donc moyennable). On peut montrer aussi
qu’il n’est pas de croissance polynomiale [dIH00L VIII.63]. Il est le premier
tel exemple. Cela ne résout pas encore la question sur la classification des
croissances : il reste ouvert le Growth Gap Conjecture [Gril4d, Conjec-
ture 2|, qui conjecture que la croissance en volume doit étre soit polyno-
miale, soit plus grande que exp(y/n). Plus généralement, la version faible
de cette conjecture est qu’il existe un 0 < 8 < 1 tel que la croissance en
volume doit étre soit polynomiale, soit plus grande que exp(n?).

On peut aussi montrer que ce groupe est de torsion, mais pas de torsion
fini : plus précisément, pour chaque vy € I" il existe N tel que fyzN =1,
mais pour chaque n il existe v tel que v2" # 1.

2.3.3 Définition de la fonction de Fglner

Fixons un groupe GG moyennable de type fini et un ensemble générateur
S et soit I son graphe de Cayley. Rappelons la condition de Fglner :
Théoreme @(3) On rappelle que pour un groupe de type fini, on peut
considérer F comme n’importe quel ensemble générateur fixé. On s’intéressera
en particulier & F = S|J S~ (J{Id}. Alors pour un ensemble F, F.EAF
est ’ensemble des éléments g qui ne sont pas dans F' mais pour lesquels
il existe un s = s(g) € S tel que s.g olt s '.g est dans F. Autrement
dit, ce sont les éléments dans le complémentaire de F' qui sont & distance
1 de F dans T'. On appellera cet ensemble Oy F (définition valable de
fagon générale pour tout graphe). Similairement, 9;, F' sera ’ensemble des
éléments de I & distance 1 de l'extérieur. Finalement, OF est ’ensemble
d’arrétes entre I’ et son complémentaire. La fonction de Fglner est alors :

O] 11
[Fl ~n

Fol(n) = min {|F :FCQG, (2.1)

Remarquons que Fgl(1) = 1 pour tout groupe et tout ensemble générateur.

2.3.4 Quasi-isométries et équivalence asymptotique

Soient X et X’ deux espaces métriques. Une fonction ¢ : X — X' est
appelée un plongement quasi-isométrique s’il existe des constantes
A>1et C >0 telles que pour tout x,y :

Ld(e,y) = C < d(6(2),6(0)) < M, y) + C.
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C’est une quasi-isométrie si de plus il existe D > 0 tel que chaque
point de X’ est a distance plus petite que D d’un point de ¢(X). On le
considere dans le cas des groupes de type fini avec la métrique de longueur
de mots.

Proposition 25. Soit G un groupe de type fini et S et S" deuzr ensembles
générateurs. Alors G avec la métrique de longueur de mots sur S est
quasi-isométrique a G avec la métrique de longueur de mots sur S’.

On a donc une notion de quasi-isométrie de groupes bien définie pour
les groupes de type fini. Les propriétés préservées par quasi-isométrie sont
considérées comme des propriétés géométriques. La moyennabilité en est
une. Une fagon simple de voir cela est d’utiliser la condition de Fglner.

Il existe plusieurs propriétés pour lesquelles on ne sait pas si elles sont
géométriques. Par exemple, on ne sait pas si deux groupes, I'un avec un
sous-groupe libre et I'autre sans, peuvent étre quasi-isométriques. Etre
de torsion aussi, on ne sait pas si cette propriété est préservé par quasi-
isométrie.

Le type de croissance (comme défini dans la Section est préservé
par quasi-isométries. Par rapport aux fonctions de Fglner, les quasi-
isométries les préservent a équivalence asymptotique prés. Deux fonc-
tions sont asymptotiquement équivalentes s’il existe des constantes A et
B tels que f(x/A)/B < g(X) < f(zA)B. L’approche standard pour
décrire la fonction de Fglner d’un groupe est ainsi de donner sa classe
d’équivalence asymptotique. Il vaut de noter aussi que la classe d’équivalence
asymptotique de la probabilité de retour apres 2n pas est préservé par
quasi-isométrie pour les graphes de Cayley (voir Pittet et Saloff-Coste [PSC00]).

2.3.5 Fonctions de Fglner

Comme on I’a mentionné dans la Section [2.3.4] généralement, on cherche
a classifier les fonctions de Fglner & équivalence asymptotique pres. Le
Théoreme isopérimétrique classique dit que le compact dans R™ qui mi-
nimise le bord pour un volume fixé est la boule (voir le survol d’Osser-
man [Oss78) Section 2]). Car Z™ est quasi-isométrique a R™, cela est aussi
un premiere résultat pour les groupes discrets. Le fait que si un minimum
existe, il est réalisé uniquement sur la boule est obtenu (dans R?) par Stei-
ner au XIX€ siecle, en utilisant ce qui est maintenant appelé symétrisation
de Steiner (voir Hehl [Heh13|, Hopf [Hop40|, Froehlich [Fro09]). L’exis-
tence du minimum est prouvé, dans R®, par Schwarz [Sch84]. Varopou-
los [Var85b| démontre plus généralement une inégalité isopérimétrique
pour les produits directs. Pansu [Pan83b| (voir aussi [Pan82]) en obtient
dans le groupe de Heisenberg Hs. Un résultat central est 'inégalité de
Coulhon et Saloff-Coste [CSC93|, qui relie la croissance en volume et la
fonction de Fglner :

Théoreme 26 (Inégalité de Coulhon et Saloff-Coste). Soit G un groupe
infini engendré par un ensemble S fini et soit $(\) = min(n|V(n) > X),
ot V(n) est la taille de la balle de rayon n dans le graphe de Cayley. Alors
pour tout ensemble F' fini on a
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0P| 1
[F| 8[S[elF])

Les constantes multiplicatives peuvent étre améliorées (voir G. Pete [Pet20),
Theorem 5.11|, B. L. Santos Correia [SC20]) :

OnF| 1
[Fl~ 20Q2[F])

(2.2)

Le résultat de Santos Correia est annoncé également pour les groupes
finis pour |F'| < 1|G/|. L’inégalité de Coulhon et Saloff-Coste (Théoréme
implique en particulier que pour un groupe de croissance exponentielle, sa
fonction de Fglner est au moins exponentielle. Similairement, il est connu
que les fonctions de Fglner des groupes de croissances polynomiales sont
au plus polynomiales (voir par exemple [Woe(0, Section 1.4.C]). Une autre
inégalité sur lisopérimétrie des groupes est donné par Zuk [ZukOO]. Ver-
shik [Ver73| demande si la fonction de Fglner peut étre super-exponentielle,
ce qui marque le début de I'étude des fonctions de Fglner. 11 suggere le
produit en couronne ZQZ comme un exemple & considérer. Pittet [Pit95]
montre que les fonctions de Fglner des groupes polycycliques sont au plus
exponentielles (elles sont donc exponentielles pour les groupes polycy-
cliques de croissance exponentielle). Cela est plus généralement vrai pour
les groupes résolubles avec rang de Priifer fini, voir [PSCO03] et [KL20]. Le
premier exemple de groupe avec fonction de Fglner super-exponentielle
est obtenu par Pittet et Saloff-Coste [PSC99] pour Z?{ Z/27Z. Plus tard
les fonctions de Fglner des produits en couronnes avec certains conditions
de régularité sur les groupes de base sont décrites par Erschler [Ers03] a
équivalence asymptotique prét. Spécifiquement, on dénote qu’une fonc-
tion f vérifie la propriété (x) si pour tout C' > 0 il existe k& > 0 tel que
f(kn) > Cf(n). Son résultat dit alors que pour deux groupes dont les
fonctions de Fglner vérifient cette propriété, la fonction de Fglner de leur
produit en couronne A B est Folyp(n) = Folp(n)Fola(),

Une direction d’études des fonctions de Fglner cherche & décrire la
clagse de fonctions f pour lesquelles il existe un groupe dont la fonc-
tion de Fglner est asymptotiquement équivalente & f. Plusieurs auteurs
ont trouvé des conditions de plus en plus faibles. Gromov [Gro08, Sec-
tion 8.2, Remark (b)] construit des groupes avec des fonctions de Fglner
prescrits pour toutes les fonctions dont des dérivées croissent assez vite.
Saloff-Coste et Zheng [SCZ18| décrivent les fonctions de Fglner, entre
autres, d'une classe des «bubbles groupes et d’une classe de groupes cy-
cliques de Neumann-Segal. Plus récemment, Brieussel et Zheng [BZ21]
démontrent que pour toute f croissante avec f(1) = 1 et n/f(n) crois-
sante, il existe un groupe dont la fonction de Fglner est asymptotiquement
équivalente a Iexponentielle de la fonction inverse de n/f(n). Erschler et
Zheng [EZ21] obtient des exemples pour une classe de fonctions super-
exponentielles en dessous de exp(n?) avec des conditions de régularité
plus faibles. Spécifiquement, pour tout d € N et 7(n) < n¢ largement
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croissante elles obtiennent qu’il existe un groupe G et une constante C'
avec

Crexp(n + 7(n)) > Folg(n) > exp(%(n +r(n/C)).  (23)

La coté gauche est toujours asymptotiquement équivalente a exp(n +
7(n)), et il suffit donc que la coté droite le soit aussi pour décrire la fonc-
tion de Folner de G. En particulier, il suffirait que 7 vérifie (*). Remar-
quons que les conditions décrites ici ne considerent que les fonctions plus
grandes que exp(n); c’est une question ouverte de savoir si une fonction
de Folner peut avoir croissance intermédiaire (voir Grigorchuk [Grildl
Conjecture 5(ii)]). Par Erschler [Ers06, Lemme 3.1], une réponse négative
impliquerait le Growth Gap Conjecture. On peut définir une version faible
de la conjecture pour les fonctions de Fglner de fagon similaire & la forme
faible du Growth Gap Conjecture. Les versions faibles sont équivalentes
(voir la discussion apres Conjecture 6 dans [Grild]).

On connait encore moins les descriptions exactes des fonctions de
Folner. Dans un travail en cours [3] (voir Chapitre [5)) on obtient des
valeurs exactes pour les fonctions de Fglner du produit en couronne
(voir Section Z Zs pour deux ensembles générateurs (on dénote
Zo = 7.J27.), et des résultats isopérimétriques sur le groupe de Baumslag-
Solitar BS(1,2). Des connaissances de lauteur, ce sont les premieres
exemples ol les valeurs exactes d’une fonction de Fglner non-polynomiale
sont connues. On rappelle que les ensembles de Fglner standards Fj,
sur Z 1 Zy sont F, = {(k, f)|k € [1,n],supp(f) C [1,n]}. On dénote
t=(1,0) et § = (0,8}). Les deux ensembles générateurs qu’on considéra
ici sont ’ensemble standard S = {¢, d} et 'ensemble «switch-walk-switch»
S" = {t,4,t0,5t,5td}.

Définition 27. On dira qu’un sous-ensemble F' fini d’'un groupe G est
optimal par rapport au bord intérieur (respectivement extérieur, par
rapport aux arrétes) si pour tout F’ avec |F'| < |F|, on a
|ainF/‘ > lamF‘
FT =

(respectivement ‘BT}‘;,lr' > |BT§|F‘, “85," > %), et si [F'| < |F|, les

inégalités sont strictes.
On obtient alors :

Théoreme F. Considérons le produit en couronne 7.1 Zs.

1. Pour tout n € N, [l’ensemble de Folner standard F,, est optimal
par rapport au bord extérieur et le bord par rapport auzr arrétes
pour l'ensemble générateur standard S. Autrement dit, pour tout
F CZ1Zs tel que |F| < |F,|, on a

|8F’ > |aoutF‘ > ’aoutFn‘ _ ’aFn’
S N |Fo|

et si |F| < |Fy|, les inégalités sont strictes,
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2. Pour toutn € N on a
(a) Pour S, F,\J OoutFy est optimal par rapport au bord intérieur,
(b) Pour S', F,\J0,,.Fn est optimal par rapport au bord intérieur,

3. Les résultats de (2) impliquent que, pour n > 2, la fonction de
Folner sur 7.1 Zs pour 'ensemble générateur standard est

Fol(n) = 2n22(~1)
et pour ’ensemble «switch-walk-switchs elle est

Folgws(n) = 2n2",

De plus les ensembles qui donnent 1’égalité sont uniques & translation
prét. Remarquons que le point (3) est le Théoreme [D]

On substitue ces valeurs dans l'inégalité de Coulhon et Saloff-Coste
pour étudier les constantes multiplicatives. L’inégalité implique (pour
toute groupe infini et toute ensemble générateur fini) :

2Fol(n) > V(g —1).

Pour les groupes de croissance exponentielle, il n’est pas difficile de
voir que la constante multiplicative devant n est plus importante que les
autres constantes. Effectivement, si on obtient A Fol(n) > V(n(3+¢)—B)
pour certains €, A, B > 0, ce résultat est strictement plus fort pour n assez
grand. On peut donc demander :

Question. Pour un groupe G et un ensemble générateur S, on dénote
Cg,s le supremum de I'ensemble des constances C' tels qu’ils existent A
et B avec AFol(n) > V(Cn — B). Quel est U'infimum Cj de l'ensemble
de tout Cg, g sur tout groupe et tout ensemble générateur fini?

L’inégalité originale donne une réponse positive pour C = ﬁ (et
donc Cy > ﬁ), et les résultats de [Pet20, Theorem 5.11] et [SC20] qu’on

a cité en tant qu'Equation montrent que Cy > %

In Fgl(n) InV(n)

Il n’est pas difficile de voir que si les limites lim et lim —~=
existent pour un groupe et un ensemble générateur, le supremum Cg g
sera leur quotient. La deuxieme limite existe toujours. Chaque élément
de longueur au plus mn s’écrit comme le produit de deux éléments de

longueur respectivement au plus m et au plus n. On a donc
V(m+mn) <V(m)V(n),

et InV(n) est sous-additive. La limite existe alors par le lemme sous-
additif de Fekete. Par contre, ’autre limite lim % peut ne pas exister.
Un exemple trivial vient des groupes avec fonctions de Fglner super-
exponentielles, ol la suite diverge vers +oco. Mais méme si on décide
de considérer cela comme une suite convergente (vers +oo), la limite

n’est encore pas toujours existant. On peut considérer des exemples de
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Erschler et Zheng ot la fonction de Fglner oscille entre expn et expn®.
Alors % oscille entre une constante finie et +o0o. Spécifiquement,
considérons [EZ21] Example 3.8(2)] avec a = 1 et § = 2. Prenons une
suite (n;) et une fonction 7(n) = n® pour n € [9;j_1,72;] et 7(n) = n?
pour n € [124,12;+1]. L’exemple nous donne un groupe dont la fonction de
In Fgl(n) < In(Cn) +
n n
1—1—@, qui est plus petit que 3 pour n grand. En autre, si n € [n2;,m2;+1],

n

Fglner vérifie Inégalité . Pour n € [n2j—1,m2;5] on a

% > a-(n+7(n/C)) = £+ & En particulier, il est plus grand que
In Fgl(n)
4 pour n grand. On a donc que ———— ne converge pas vers une constante
finie, et ne diverge pas vers +o0o. On peut quand méme considérer lim inf.

. . InFal(n
hmlnf%(")

Proposition G. Cg s = T Oy -

D’apres le Théoreme [D] sur Z1Zs on a (voir [3, Section 5]; Chapitre
pour les estimations sur le volume) :

Proposition H. Le produit en couronne Z Zo vérifie
. InFgl(n)
lim =— == In4

= ~ 2,88
m PV (14 V)

Crz,,5 =

pour l’ensemble générateur standard, et

. InFgl,,.
hm%“”(n)
Criz,s = lln—V(n) =2

11m
n

On obtient une borne supérieure Cy < 2. Cette borne était déja
connu avant de montrer que les ensembles standards sont optimaux;
Théoreme [D] démontre que ces exemples ne peuvent pas donner mieux.
Par contre, on démontre dans [3] (voir Chapitre [5) que Cy < 1.

Proposition 1. Le produit en couronne permutationnel DoooZo (qu’on a
décrit dans Sectionm avec l'ensemble générateur {t,,t,, 0,10, 6ty, dt;0,t,0, 0ty 6t}
vériﬁe lim inf LF:’;(") 1

lim % ’

Spécifiquement, on obtient Fgl(2n+1) = 2(2n+1)22"! et lim % =
In 2. Cela vient du fait que dans les ensembles standards, le support des
fonctions est contenu dans un intervalle d’un rayon (le rayon qu’on voit
sur la Figure sur page [18), et (il est bien choisi) le bord du support
est donc de cardinal 1.

Une voie de recherche connue est 1’étude de la série de croissance
> V(n)z™, spécifiquement si elle est une fonction rationnelle. Une réponse
positive est obtenu pour les groupes hyperboliques pour tout ensemble
générateur par Gromov [Gro87) (voir aussi [Can84],|[GAIH90), Chapitre 9]),
et par Benson [Ben83| pour les groupes virtuellement abéliens. Une condi-
tion suffisante qu’on remarque est d’avoir un "nombre fini de types co-
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niques". Passant des groupes virtuellement abéliens vers les groupes nil-
potents, Benson [Ben87| et Shapiro [Sha89] montrent que la série de crois-
sance du groupe de Heisenberg sur les entiers H3 est rationnelle pour l’en-
semble générateur standard. Stoll [Sto96] étudie le groupe de Heisenberg
Hs de dimension plus grande et obtient que la série n’est pas ration-
nelle pour ’ensemble standard, mais elle I'est pour un autre ensemble
générateur. Duchin et Shapiro [DS19| obtiennent plus tard la rationalité
sur H3 pour tout ensemble générateur. Voir Grigorchuk-de la Harpe [GdIH97],
Section 4| pour un survol. Avoir des valeurs exactes pour les fonctions de
Folner nous permet d’étudier la série ) Fgl(n)z". Comme une coro-
laire de Théoreme [D] on obtient que les séries dans ces deux exemples
sont des fonctions rationnelles : respectivement 0 4w2f1)2 et 4 418f1)2. Il serait

intéressant de trouver une condition géométrique suffisante qui explique
cela.

On obtient de plus un résultat isopérimétrique sur le groupe de Baumslag-
Solitar BS(1,2) en terme du bord par rapport aux arétes. Les groupes de
Baumslag-Solitar sont définis par la présentation BS(m,n) = (a, blba™b~! =
a™). Il est moyennable si et seulement s’il est résoluble, si et seulement si
|m| =1 ou |n| = 1. Le groupe BS(1, p) est isomorphe au groupe engendré
par ¢ — x + 1 et x — px (qui seront respectivement l'image de a et de
b~=1). On peut écrire ces éléments de la forme x + p"z + f avec n € Z
et f e Z[I%]. Les générateurs agissent (a droite) respectivement en rajou-
tant p” dans f ou en changeant n, ce qui présente une structure similaire
aux produits en couronnes. Si on écrit cet élément de la forme (n, f), les
ensembles standards s’expriment de la méme facon que pour les produits
en couronnes. Autrement dit,

F,={p"c+ flke[l,n],f € Z,0< f <p"tiL (2.4)

Théoreéme (Théoreme . Considérons le groupe de Baumslag-Solitar
BS(1,2) avec l'ensemble générateur {a,b}. Alors pour tout n € N et tout

F C BS(1,2) fini tel que |F| < |F,|, on a % > ‘lalf"‘l, et si |F| < |Fyl,

l'inégalité est stricte.

Dans le cas général de BS(1,p), on montre que dans BS(1,8), I'en-
semble standard avec 8 éléments n’est pas optimal. Par contre, ce résultat
est relié au fait que p n’est pas négligeable par rapport au longueur de
Iintervalle qui définit ’ensemble standard, et il est possible que pour
BS(1,p) aussi, les ensembles standards sont optimaux pour grands n.

2.4 Marches aléatoires gouvernées par des me-
sures sur les groupes

2.4.1 Définitions

Soit une mesure p sur un groupe GG. La marche aléatoire associée sur
G est la chaine de Markov gouvernée par la probabilité de transition
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p(f1, f2) = M(fflfg). Autrement dit, p(f, fg) = p(g). Intuitivement, &
chaque pas on choisit un élément ¢ par p et on multiplie (& droite) la

position oll on se trouve par g. Si on part de I’élément neutre, cela donne
une trajectoire T, = g1g2 . .. g, ol g; sont indépendantes et identiquement
distribuées par . Remarquons que la trajectoire reste dans le semi-groupe
engendré par le support de pu. On dira qu'une mesure est non-dégénérée
si son support engendre G. Il vaut de noter qu’on aurait pu également
multiplier & gauche - c’est un choix de convention.

On définit la marche aléatoire induite par une action de facon similaire.
Encore une fois, & chaque pas on choisit un élément g € G par p et on
multiplie par lui. On obtient p(x,y) = Zx.g:y 1(g), et la trajectoire est
T, =0.9192 . ..gn. Noter qu’on a pris l'action a droite.

On cherche & comprendre le comportement limite de ces marches,
spécifiquement en terme de leurs bords de Poisson. Le bord de Poisson
(aussi dit de Poisson-Furstenberg) est défini de facon générale pour une
marche quelconque, et il y a plusieurs définitions équivalentes (voir [KV83]).

Définition 28. Considérons une marche aléatoire et la mesure P induite
sur l'espace des trajectoires G%+. Considérons la relation d’équivalence
suivante : (zg,z1,...) ~ (Yo, y1,-..) si et seulement s'il existe i9p € N et
k € Z tels que pour tout i > iy, ; = y;1k. Autrement dit, deux tra-
jectoires sont équivalentes quand elles sont les mémes quitte & supprimer
un nombre fini (possiblement différent) de points au début. Le Bord de
Poisson de la marche est le quotient de (G%+, P) par I'enveloppe mesu-
rable de cette relation d’équivalence.

De facon équivalente, le bord de Poisson B peut étre défini comme
le p-bord maximal, un p-bord étant un quotient de P par une partition
mesurable et invariante par rapport aux translations et par rapport aux
multiplication par les éléments de G.

Pour une marche sur une groupe, une formule dite formule de Pois-
son donne un isomorphisme entre L°°(B) et 'espace des fonctions p-
harmoniques bornées sur le groupe. Une fonction est p-harmonique si
pour tout z, f(z) = > u(g)f(zg). Cela permet de définir le bord de
Poisson aussi comme le spectre de l'algebre de Banach que cet espace
forme avec le produit approprié. Une autre réalisation abstraite du bord
est en tant que l'espace des composantes ergodiques pour la translation.
Voir aussi les survols par Erschler [Ers10], Furman [Fur02].

Si le bord de Poisson n’admet que des ensembles de mesure 0 ou 1,
on dit qu’il est trivial. Quand le bord de la marche aléatoire induite sur
un groupe G par une mesure g sur G est trivial, on dit que (G, u) est
Liouville. Remarquons que la formule de Poisson dit qu’une mesure est
Liouville si et seulement si les seules fonctions p-harmoniques bornées sur
G sont les fonctions constantes.

On a une définition similaire sur les graphes ol on dit qu’un graphe I'
vérifie la propriété de Liouville si les seules fonctions harmoniques bornées
sur I sont les fonctions constantes (pour un graphe de Cayley cela est
équivalente au fait que la mesure de comptage normalisé sur S U S™! est
Liouville). Cette propriété n’est pas stable par quasi-isométrie d’apres un
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résultat de Lyons [Lyo87] : il décrit deux graphes quasi-isomorphes ot
I'un admet la propriété de Liouville et I'autre non. Benjamini [Ben91]
obtient de plus un exemple qui vérifie ces conditions et pour lequel les
graphes sont de croissance polynomiale.

Pour une classe de mesures, on peut savoir si elles sont Liouville en
utilisant ’entropie de la marche. L’entropie d’une mesure est défini par

H(p) = —p(g)log u(g),

geG

et celle de la marche associée (dite entropie asymptotique, voir Avez [AveT2])
par

H(y*m
h(u) = Tim 2.
n—oo n
On a H(uxA) < H(u) + H(N) et donc si H(u) est fini, cette limite
existe et h(u) est fini. Avez [Ave76| obtient que si h(u) = 0, alors la mesure
est Liouville. Pour les mesures avec entropie fini, 'inverse est aussi vrai :

Théoreme 29 (Critere d’entropie (Kaimanovich-Vershik [KV79) KV83|,
Derriennic [Dexr80])). Soit G un groupe dénombrable et j1 une mesure sur

G avec entropie finie. Alors (G, ) est Liouville si et seulement si h(u) =
0.

Pour les mesures de premier moment fini, on peut relier 'entropie
a la vitesse de fuite. Le premier moment d’une mesure est l'espérance
de la longueur de mot > . [g|u(g). 11 dépende du choix d’ensemble
générateur, mais sa finitude n’en dépend pas. La vitesse de fuite est
ls(p) = limy, o0 % olt L(n) = 3 cqlglw™(g) (et S est un ensemble
générateur). Il n’est pas difficile de voir que h < wl (voir [Gui80, Sec-
tion CJ), et donc si I = 0, on a h = 0. Pour les mesures symétriques,
I'inverse est aussi vrai. Ceci est obtenu par Varopoulos [Var85al pour les
mesures de support fini, et par Karlsson et Ledrappier [KL0OT| pour les

mesures de premier moment fini.

2.4.2 Liens avec la moyennabilité
Le bord de Poisson donne une autre critere de moyennabilité :

Théoréme 30. Un groupe G est moyennable si et seulement s’il existe
un mesure Liouville p non-dégénérée sur G.

Le sens inverse est donné par Azencott [Aze70], voir aussi Fursten-
berg [Fur73| qui conjecture de plus le sens direct. Celui-ci est montré par
Rosenblatt [Ros81| et Kaimanovich-Vershik [KV79, [KV83].

Il vaut de noter qu'un groupe peut avoir certaines mesures qui sont
Liouvilles et d’autres qui ne le sont pas. Kaimanovich et Vershik [KV83]
montrent que les mesures non-dégénérés de support fini sur Z? Zy pour
d > 3 ne sont pas Liouville (et une mesure Liouville existe car le groupe
est moyennable). Pour les mémes groupes, Kaimanovich [Kai85] montre
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qu’il existe une mesure non-Liouville dont l'inverse est Liouville. Er-
schler [Ers04] obtient que I'entropie asymptotique des mesures non-dégénérés
sur une classe de groupes qui contient les groupes Z% Zo pour d > 3
n’est jamais nulle. En particulier, toute mesure avec entropie finie n’est
pas Liouville, et I'entropie de la mesure Liouville qui existe d’apres le
Théoreme B0l est infinie.

La théoreme décrit la classe de groupes ofi il existe une mesure Liou-
ville - les groupes moyennables. Parmi eux ils existent de plus des groupes
ol toute mesure est Liouville. Ceci est obtenu pour les groupes abéliens
par Blackwell [Blab5] (voir aussi [DSW60],[CD60]), puis pour les groupes
nilpotents [DM61],|[Mar66], et ensuite les groupes hyper-FC-centraux [LZ98],[Jaw04].
Il vaut de noter qu'un groupe de type fini est hyper-FC-central si et
seulement s’il est virtuellement nilpotent. Dans un résultat récent, Frisch,
Hartman, Tamuz et Vahidi Ferdowsi [FHTV19| montrent que toutes les
mesures sur un groupe sont Liouville si et seulement si le groupe est hyper-
FC-central. En particulier, sur tout groupe de croissance sur-polynomiale
il existe une mesure non-Liouville. Cela était conjecturé pour les groupes
de croissance exponentielle par Kaimanovich et Vershik [KV83]. Une des-
cription complete du bord de Poisson est donné dans [EK19] pour une
classe de mesures contenant les mesures non-Liouvilles présentées dans
[FHTV19] (sur les groupes qui ne sont pas hyper-FC-centraux).

Dans [I] (voir Chapitre [3) on s’intéresse aux sous-groupes de H(Z)
(voir Section . Il n’est pas connu si ce groupe est moyennable ou
non, donc on ne sait pas s’il existe une mesure Liouville. On démontre
que certaines classes de mesures sur des sous-groupes de H(Z) ne sont
pas Liouville. Ces résultats sont inspirés par les travaux de Vaidim Kai-
manovich sur le groupe de Thompson F' (comme on a mentionné, H(Z)
contient F' comme sous-groupe).

Définition 31. Le groupe de Thompson F est le groupe des homéomorphismes
affines par morceaux de [0, 1] qui préservent ’orientation, avec un nombre

fini de morceaux, dont les extrémités des morceaux sont dyadiques, et les

pentes sont des puissances de 2.

Il est de type fini, avec deux générateurs :

t 0<t<i

t 1 >l >3

3 Ost=<3 t1 1oy B
Al)=qt-3 3<t<3 B =97 1 3_,21
2 t—s 2<t<{

20—-1 2<t<1 L 8

201 £<t<1

C’est une question ouverte célebre de savoir s’il est moyennable ou non.
Vadim Kaimanovich [Kail7] démontre que les mesures de support fini sur
F' dont le support engendre F' comme semi-groupe sont non-Liouvilles.
Dans [I] (voir Chapitre 3)), on montre :

Théoreme. Pour tout sous-groupe de type fini H de H(Z) qui n'est pas
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résoluble et toute mesure p sur H avec premier moment fini et dont le
support engendre H comme semi-groupe, (H, u) n’est pas Liouville.

En considérant une généralisation de la notion de premier moment fini
sur des sous-groupes de H(Z) qui ne sont pas de type fini, on obtient :

Théoreme (Théoreme[A). Pour tout sous-groupe de H de H(Z) qui n'est
pas localement résoluble et toute mesure p sur H avec espérance finie du
nombre de fins de morceaux et dont le support engendre H comme semi-
groupe, (H, p) n'est pas Liouville.

Il s’en suit que les mesures avec premier moment fini sur F, dont le
support engendre F' comme semi-groupe, sont non-Liouville. Cela était
soulevé comme question dans larticle de Kaimanovich [Kail7, 7.A]. Pour
les mesures de support fini qu’il considere, les configurations associées
stabilisent (point par point) des que la marche transiente induite sur
les nombres dyadiques sort d’un ensemble fini fixé. Pour les mesures de
premiere moment fini, le valeur peut changer tout au long de la trajectoire,
et on a du montrer (voir [I, Lemma 7.2]; Chapitre |3) que I'espérance du
nombre de changements est fini.

La condition de moyennabilité avec le bord de Poisson est nécessaire
et suffisante, mais & mes connaissances, elle n’a pas été utilisée pour
démontrer la non-moyennabilité d’un groupe. Dans 'autre direction par
contre, elle a été utilisée pour montrer la moyennabilité d’un groupe.
Bartholdi et Virdg [BV05]| démontrent que le groupe de la Basilique
(voir Section est moyennable en montrant que ’espérance de la
distance & l'origine augmente de facon sous-linéaire; et puis en appli-
quant le critere de Kesten. Dans un article inspiré par leur méthode,
Kaimanovich [Kai035] démontre plus généralement que pour une classe de
groupes auto-similaires (qui contient le groupe de la Basilique), pour cer-
tains mesures ’entropie asymptotique est zéro. Ils sont donc Liouvilles
(voir Théoreme [29), et les groupes de cette classe sont moyennables.

2.4.3 Graphes de Schreier

On a aussi des résultats plus généraux sur les marches sur le graphe
de Schreier de F' (voir Définition . On rappelle que la marche aléatoire
est définie par le noyau p(z,y) = Ex_g: wu(g). Il n’est pas difficile de
voir que le bord de Poisson de cette marche est un quotient du bord de
Poisson de la marche sur le groupe. En particulier, si le bord sur le graphe
de Schreier est non-trivial, la mesure n’est pas Liouville.

Mishchenko [Mis15] développe une autre approche pour étudier le non-
trivialité des bords de Poisson sur F. Il démontre que la marche aléatoire
simple sur le graphe de Schreier que F' induit sur les nombres dyadiques
a un bord de Poisson non-trivial. Kaimanovich [Kail7, Section 6] obtient
ce résultat pour les mesures de support fini. Dans [2] (voir Chapitre [)
on prouve que le bord de Poisson de la marche induite sur le graphe de
Schreier est non-trivial pour les mesures avec premier moment fini dont
le support engendre F' comme semi-groupe. C’est une conséquence (d’'un
corollaire) du résultat suivant :
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Théoréme (Théoréme. Considérons une action transitive d’un groupe
G. Soit S un ensemble générateur et I' le graphe de Schreier associé. Soit
@ une mesure sur G- avec premier moment fini tel que la marche aléatoire
induite sur I’ est transiente. Alors elle converge presque surement vers un
bout (aléatoire) du graphe.

Ce résultat était déja connu dans le cas ol1 'action de G sur X est
non-moyennable (voir Woess [Woe(00, Théoreme 21.16| - c’est un cas par-
ticuliere de ce théoreme), encore avec la condition de premier moment fini.
La théoreme cité est plus généralement vrai pour une marche aléatoire qui
n’est pas nécessairement induite par une mesure sur un groupe. Elle sup-
pose plutdt une marche uniformément irréductible, de premier moment
uniforme, et avec p < 1 (on rappelle le Critere de Kesten dans la Propo-
sition [7). Dans [2] (voir Chapitre [f)), on montre aussi que le résultat n’est
plus vrai si on ne suppose ni que la marche est induite par une mesure
sur une groupe, ni p < 1.

Il faut aussi mentionner que la transience est dans certains cas im-
pliquée par les propriétés du graphe de Schreier. On utilise un lemme de
comparaison de Baldi-Lohoué-Peyriere [BLPTT7].

Lemme 32 (Lemme de comparaison). Soit Py(z,y) et Pa(x,y) des noyauz
doublement stochastiques sur un ensemble dénombrable X et supposons
que Py est symétrique. Supposons qu’il existe € > 0 tel que

Pi(z,y) =2 ePy(z,y)
pour tout x,y. Alors si Py est transient, Py [’est aussi.

Ici, doublement stochastique veut dire que les opérateurs sont inver-
sibles et les inverses sont aussi Markov. De fagcon équivalente, ils préservent
la mesure de comptage ; le résultat est encore vrai dans un cas général ol
les opérateurs ont une autre mesure stationnaire commune, voir Kaimano-
vich [Kail7, Section 3.C]; voir aussi Woess [Woe00, Sections 2.C et 3.A].
Pour les marches qu’on considere, il est direct de vérifier qu’ils sont dou-
blement stochastiques.

Si on applique le lemme au Théoreme [Bf on obtient :

Corollaire (Corollaire[C)). Considérons une action transitive d’un groupe
G. Soit S un ensemble générateur et I' le graphe de Schreier associé.
Supposer que T est transient. Alors pour tout mesure p sur G dont le
support engendre G en tant que semi groupe et qui a un premier moment
fini, la marche aléatoire induite converge presque surement vers un bout
du graphe.

On peut 'appliquer en particulier & 'action de F sur les nombres dya-
diques. La marche induite converge donc vers les bouts du graphe, et en
utilisant "auto-similarité du graphe il n’est pas difficile de voir qu’il ne
peut pas converger avec probabilité 1 vers un bout spécifique. Ce com-
portement non-trivial implique que son bord de Poisson n’est pas trivial.
Sans la condition de premier moment fini par contre, il existe des mesures
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sur F telles que la marche induite sur les nombre dyadiques a un bord
trivial comme montré par Juschenko et Zheng [JZ18|. Juschenko [Jusl8]
a aussi étudié les marches induites sur les ensembles de cardinal n de
nombres dyadiques, donnant une condition combinatoire pour le trivialité
du bord de Poisson, et montrant qu’il existe une mesure avec un bord tri-
vial pour n = 2. Schneider et Thom [ST20, Corollary 6.2(3)] démontrent
que pour une action fortement transitive G ~ X (comme celle de F),
pour tout n il y a une mesure avec un bord trivial si et seulement si F’ est
moyennable en tant que sous-groupe topologique de Sym(X). Avec cette
topologie, F' est un sous-groupe de Aut(Z[%], <), qui est connu comme
(extrémement) moyennable d’apres Pestov [Pes9§|. On peut trouver une
présentation plus détaillée de la moyennabilité extréme dans Kechris-
Pestov-Todorcevic [KPT05], ot ils développent la théorie qui permet d’ob-
tenir des groupes extrémement moyennables d’apres la théorie de Ramsey
structurelle. En particulier, la moyennabilité extréme de Aut(Z[3], <) est
équivalente [KPTO05, 6(A)(iv)] & (une version généralisé du) théoreme
classique de Ramsey.

2.4.4 Caractérisation complete des bords de Poisson

Dans [I] (voir Chapitre [3) on démontre la non-trivialité du bord en
décrivant un p-bord de configurations associées (comme Kaimanovich a
fait dans [Kail7]). Une question plus difficile serait d’obtenir une descrip-
tion complete du bord de Poisson. Kaimanovich [Kai00] a développé des
criteres géométriques pour montrer qu'un p-bord est le bord de Poisson
pour des groupes avec des propriétés hyperboliques. Il décrit le bord des
groupes hyperboliques, et aussi des sous-groupes discrets des groupes de
Lie semi-simples et les groupes avec un nombre infini de bouts. Le «strip»
critere de cet article a depuis été utilisé pour nombreuses descriptions
completes de bords de Poisson, comme les groupes de difféotopie (Kai-
manovich et Masur [KM96]), Out(Fn) (Horbez [Horl6]), produits en cou-
ronnes de groupes libres avec des groupes finis (Karlsson et Woess [KW07]),
produits en couronnes Z% ! B ot B est fini (Erschler [ExsI1] pour d > 5,
Lyons et Peres |[LP20| pour d > 3), groupes agissant sur des R-arbres
(Gautero et Mathéus [GM12]), groupes d’automorphismes de complexes
cubiques CAT(0) (Nevo et Sageev [NS13|), groupes fondamentaux de 3-
variétés fermées (Malyutin et Svetlov [MS14]).

33



34



Chapitre 3

Non-triviality of the Poisson

boundary of random walks on
the group H(Z) of Monod
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Abstract

We give sufficient conditions for the non-triviality of the Poisson boundary of random walks
on H(Z) and its subgroups. The group H(Z) is the group of piecewise projective homeomor-
phisms over the integers defined by Monod. For a finitely generated subgroup H of H(Z), we
prove that either H is solvable, or every measure on H with finite first moment that generates
it as a semigroup has non-trivial Poisson boundary. In particular, we prove the non-triviality of
the Poisson boundary of measures on Thompson’s group F' that generate it as a semigroup and
have finite first moment, which answers a question by Kaimanovich.

Keywords— Random walks on groups, Poisson boundary, Schreier graph, Thompson’s group
F, groups of piecewise projective homeomorphisms, solvable group, locally solvable group

1 Introduction

In 1924 Banach and Tarski [4] decompose a solid ball into five pieces, and reassemble them into two
balls using rotations. That is now called the Banach-Tarski paradox. Von Neumann [38] observes
that the reason for this phenomenon is that the group of rotations of R? admits a free subgroup.
He introduces the concept of amenable groups. Tarski [48] later proves amenability to be the
only obstruction to the existence of "paradoxical" decompositions (like the one in Banach-Tarski’s
article [4]) of the action of the group on itself by multiplication, as well as any free actions of the
group. One way to prove the result of Banach-Tarski is to see it as an almost everywhere free action
of SO3(R) and correct for the countable set where it is not (see e.g. Wagon [50, Cor. 3.10]).

The original definition of amenability of a group G is the existence of an invariant mean. A
mean is a normalised positive linear functional on [®(G). It is called invariant if it is preserved by
translation on the argument. Groups that contain free subgroups are non-amenable. It is proven by
OUlshanskii in 1980 [40] that it is also possible for a non-amenable group to not have a free subgroup.
Adyan [1] shows in 1982 that all Burnside groups of a large enough odd exponent (which are known
to be infinite by result of Novikov and Adyan from 1968 [39]) are non-amenable. Clearly they do
not contain free subgroups. For more information and properties of amenability, see [5],[9],[17],[50].

*The author’s work is supported by the ERC grant GrolsRan.
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It is worth noting that despite the existence of a large amount of equivalent definitions of
amenability, to our knowledge until recently all examples of non-amenable groups without free
subgroups are proven (Ol’shanskii [40], Adyan [1], Ol'shanskii [41], Ol’shanskii-Sapir [42]) to be
such using the co-growth criterion. See Grigorchuk [18] for the announcement of the criterion,
or [19] for a full proof. For other proofs, see Cohen [11], Szwarc [47]. The criterion is closely related
to Kesten’s criterion in terms of probability of return to the origin [29].

Monod constructs in [36] a class of groups of piecewise projective homeomorphisms H(A)
(where A is a subring of R). By comparing the action of H(A) on the projective line P!(R) with
that of PSLa(A), he proves that it is non-amenable for A # Z and without free subgroups for all
A. This can be used to obtain non-amenable subgroups with additional properties. In particular,
Lodha [31] proves that a certain subgroup of H(Z[é]) is of type Fl, (in other words, such that there
is a connected CW complex X which is aspherical and has finitely many cells in each dimension
such that m(X) is isomorphic to the group). That subgroup was constructed earlier by Moore
and Lodha [33] as an example of a group that is non-amenable, without free subgroup and finitely
presented. It has three generators and only 9 defining relations (compare to the previous example
by Ol’shanskii-Sapir [42] with 102°° relations). This subgroup is the first example of a group of
type Fy, that is non-amenable and without a free subgroup. Later, Lodha [32] also proves that the
Tarski numbers (the minimal number of pieces needed for a paradoxical decomposition) of all the
groups of piecewise projective homeomorphisms are bounded by 25.

It is not known whether the group H(Z) of piecewise projective homeomorphisms in the
case A = Z defined by Monod is amenable. One of the equivalent conditions for amenability is the
existence of a non-degenerate measure with trivial Poisson boundary (see Kaimanovich-Vershik [27],
Rosenblatt [44]). This measure can be chosen to be symmetric. It is also known that amenable
groups can have measures with non-trivial boundary. In a recent result Frisch-Hartman-Tamuz-
Vahidi-Ferdowski [16] describe an algebraic necessary and sufficient condition for a group to admit
a measure with non-trivial boundary. In the present paper we give sufficient conditions for non-
triviality of the Poisson boundary on H(Z). There are several equivalent ways to define the Poisson
boundary (see Kaimanovich-Vershik [27]). Consider a measure p on a group G and the random
walk it induces by multiplication on the left. It determines an associated Markov measure P on the
trajectory space GN.

Definition 1.1. Consider the following equivalence relation on GY: two trajectories (xg,x1,...)
and (yo, 41, ... ) are equivalent if and only if there exist ig € N and k € Z such that for every i > ig
T; = Yi+k- In other words, if the trajectories coincide after a certain time instant up to a time
shift. The Poisson boundary (also called Poisson-Furstenberg boundary) of p on G is the quotient
of (GN, P) by the measurable hull of this equivalence relation.

Note that if the support of the measure does not generate GG, in which case we say that the
measure is degenerate, this defines the boundary on the subgroup generated by the support of the
measure rather than on G. For a more recent survey on results concerning the Poisson boundary,
see [14].

Thompson’s group F is a subgroup of H(Z), as follows from Kim, Koberda and Lodha [30].
This group is the group of orientation-preserving piecewise linear self-isomorphisms of the closed
unit interval with dyadic slopes, with a finite number of break points, all break points being dyadic
numbers (see Cannon-Floyd-Perry [8] or Meier’s book [34, Ch. 10] for details and properties).
It is not known whether it is amenable, which is a celebrated open question. Kaimanovich [26]
and Mishchenko [35] prove that the Poisson boundary on F' is not trivial for finitely supported
non-degenerate measures. They study the induced walk on the dyadic numbers in their proofs.
However, there exist non-degenerate symmetric measures on F' for which the induced walk has
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trivial boundary as proven by Juschenko and Zheng [21]. An equivalent statement is true for
finitely generated subgroups of H(Z), see Remark 6.4. The results of the current article are inspired
by the paper of Kaimanovich. It is not hard to prove that H(Z) is not finitely generated (see
Remark 3.1.2), so we will consider measures the support of which is not necessarily finite.

Our main result is as follows. Consider the group H(Z) of piecewise projective homeomor-
phisms, as defined by Monod [36], in the case A = Z. For g € H(Z) denote by Br(g) the number of
break points of g, which is the ends of pieces in its piecewise definition. We will say that a measure p
on a subgroup of H(Z) has finite first break moment if the expected number of break points E[Br]
is finite. A group H is called locally solvable if all finitely generated subgroups are solvable. Then

Theorem 1.2. For any subgroup H of H(Z) which is not locally solvable and any measure y on H
with finite first break moment E[Br] and such that the support of u generates H as a semigroup,
the Poisson boundary of (H, p) is non-trivial.

For a measure p on a finitely generated group, we say that u has finite first moment if the word
length over any finite generating set has finite first moment with respect to p. This is well defined
as word lengths over different finite generating sets are bilipschitz, and in particular the finiteness
of the first moment does not depend on the choice of generating set. We remark (see Remark 7.4)
that any measure p on a finitely generated subgroup H of H(Z) that has finite first moment also
has finite expected number of break points. Therefore by Theorem 1.2 if 4 is a measure on a non-
solvable finitely generated subgroup H such that the support of u generates H as a semigroup and
w has finite first moment, the Poisson boundary of (H, u) is non-trivial. Furthermore, in the other
case we will show (Lemma 9.1) that so long as H is not abelian, we can construct a symmetric
non-degenerate measure with finite 1 — ¢ moment and non-trivial Poisson boundary.

The structure of the paper is as follows. In Section 3, given a fixed s € R, to every element
g € H(Z) we associate (see Definition 3.2.1) a configuration Cy. Each configuration is a function
from the orbit of s into Z. The value of a configuration Cy at a given point of the orbit of s represents
the slope change at that point of the element g to which it is associated. There is a natural quotient
map of the boundary on the group into the boundary on the configuration space. The central idea
of the paper is to show that under certain conditions, the value of the configuration at a given point
of the orbit of s almost always stabilises. If that value is not fixed, this then implies non-triviality
of the boundary on the configuration space, and thus non-triviality of the Poisson boundary on the
group. These arguments bear resemblance to Kaimanovich’s article on Thompson’s group [26], but
we would like to point out that the action on R considered in the present article is different.

In Section 4 we obtain the first result for non-triviality of the Poisson boundary (see Lemma 4.2).
Measures satisfying the assumptions of that lemma do not necessarily have finite first break mo-
ment. In Section 5 we study copies of Thompson’s group F in H(Z). Building on the results from it,
in Section 6 we obtain transience results (see Lemma 6.1) which we will need to prove Theorem 1.2.
In Section 7 we prove Lemma 7.2 which is the main tool for proving non-triviality of the Poisson
boundary. In the particular case of Thompson’s group, the lemma already allows us to answer a
question by Kaimanovich 26, 7.A]:

Corollary 1.3. Any measure on Thompson’s group F that has finite first moment and the support
of which generates F' as a semi-group has non-trivial Poisson boundary.

We mention that the arguments of Lemma 7.2 could also be applied for the action and
configurations considered in Kaimanovich’s article, giving an alternative proof of the corollary.
Combining the lemma with the transience results from Section 6 we obtain non-triviality of the
Poisson boundary under certain conditions (see Lemma 7.3), which we will use to prove the main
result. As the negation of those conditions passes to subgroups, it suffices to show that if H is
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finitely generated and does not satisfy them, it is then solvable, which we do in Section 8. Remark
that the theorem generalises the result of Corollary 1.3. In Section 9 we give an additional remark
on the case of finite 1 — ¢ moment.
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2 Preliminaries

2.1 PSLy(Z) and H(Z)

The projective linear group PSLy(R) is defined as SLy(R)/{Id, —Id}, which is the natural quotient
that describes the linear actions on the projective space P*(R). As the latter can be defined as
S/(x ~ —x), we can think of it as a circle for understanding the dynamics of the action of the
projective group. Remark that it is commonly understood as the boundary of the hyperbolic plane.
In this paper we will not be interested in the interior of the hyperbolic plane as we do a piecewise
definition of H(A) on P'(R). An element h € PSLs(R) is called:

1. Hyperbolic if [tr(h)| > 2 (or equivalently, tr(h)? — 4 > 0). In this case a calculation shows
that h has two fixed points in P!(R). One of the points is attractive and the other repulsive
for the dynamic of h, meaning that starting from any point and multiplying by h (respectively
h~1) we get closer to the attractive (resp. the repulsive) fixed point.

2. Parabolic if |[tr(h)| = 2. In this case h has exactly one "double" fixed point. We can identify
PY(R) with R U {00} in such a way that the fixed point is co, in which case h becomes a
translation on R. We will go into detail about the identification below.

3. Elliptic if [tr(h)| < 2. Then h has no fixed points in P!(R) and is conjugate to a rotation.
If we consider it as an element of PSLy(C), we can see that it has two fixed points in P!(C)
that are outside P!(R).

Consider an element (Zj) e R2\0. If y # 0, identify it with %, otherwise with co. This

clearly passes on P'(R), and the action of PSLs(R) becomes (z b) T = Z;jr's The conventions

for infinity are (z Z) (o) = ¢ if ¢ # 0 and o0 otherwise, and if ¢ # 0, (Ccl 2) .(f%) = . Note
that by conjugation we can choose any point to be the infinity.

Let us now look into the groups defined by Monod [36]. We define I' as the group of all
homeomorphisms of R u {o0} that are piecewise in PSLy(R) with a finite number of pieces. Take
a subring A of R. We define I'(A) to be the subgroup of I' the elements of which are piecewise
in PSLy(A) and the extremities of the intervals are in P4, the set of fixed points of hyperbolic

elements of PSLy(A).

Definition 2.1.1. The group of piecewise projective homeomorphisms H(A) is the subgroup of
I'(A) formed by the elements that fix infinity.
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It can be thought of as a group of homeomorphisms of the real line, and we will use the same
notation in both cases. We will note G = H(Z) to simplify. Note in particular that oo ¢ Pz. This
means that the germs around +00 and —oo are the same for every element of G. The only elements
in PSLy(Z) that fix infinity are

{(an = (é T))nez} = G~ PSLy(Z). (1)

Fix g € G and let its germ at infinity (on either side) be a;,. Then ga_, has finite support.
The set of elements G < G that have finite support is clearly a subgroup, and therefore if we denote
A = {an,n € Z}, we have

G=G+A
For the purposes of this article, we also need to define:

Definition 2.1.2. Consider the elements of I' that fix infinity and are piecewise in PSLy(Z). We
call the group formed by those elements the piecewise PSLo(Z) group, and denote it as G.

Remark that in an extremity  of the piecewise definition of an element g € é, the left and
right germs g(y —0) and g(+ + 0) have a common fixed point. Then g(y + 0)~!g(y —0) € PSL2(Z)
fixes v. Therefore the extremities are in Pz u Q U {00}, that is in the set of fixed points of any (not
necessarily hyperbolic) elements of PSLo(Z). In other words, the only difference between G and
G = H(Z) is that G is allowed to have break points in Q U {00}, that is in the set of fixed points
of parabolic elements. Clearly, G < G. This allows us to restrain elements, which we will need in
Section 8:

Definition 2.1.3. Let f € C~¥, and a,b € R such that f(a) = a and f(b) = b. The function f1(4s)
defined by f |5 (z) = f(z) for z € (a,b) and f(z) = x otherwise is called a restriction.

Remark that f]q) € G. The idea of this definition is that we extend the restrained function
with the identity function to obtain an element of G.

The subject of this paper is G, however in order to be able to apply results from previous
sections in Section 8, we will prove several lemma for G. The equivalent result will easily follow for
G just from the fact that it is a subgroup.

2.2 Random walks

Throughout this article, for a measure g on a group H we will consider the random walk by
multiplication on the left. That is the walk (2, )nen where 41 = Y@, and the increments y,, are
sampled by p. In other words, it is the random walk defined by the kernel p(z,y) = yz~'. Remark
that for walks on groups it is standard to consider the walk by multiplications on the right. In this
article the group elements are homeomorphisms on R and as such they have a natural action on the
left on elements of R, which is (f, z) — f(z).

We will use Definition 1.1 as the definition of Poisson boundary. For completeness’ sake we also
mention its description in terms of harmonic functions. For a group H and a probability measure
w on H we say that a function f on H is harmonic if for every g € H, f(g) = ey f(hg)u(h).
For a non-degenerate measure, the L* space on the Poisson boundary is isomorphic to the space of
bounded harmonic functions on H, and the exact form of that isomorphism is given by a classical
result called the Poisson formula. In particular, non-triviality of the Poisson boundary is equivalent
to the existence of non-trivial bounded harmonic functions.

We recall the entropy criterion for triviality of the Poisson boundary.
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Definition 2.2.1. Consider two measures p and A on a discrete group H. We denote u * A their
convolution, defined as the image of their product by the multiplication function. Specifically:

wx MA) = J,LL(Ah_l)d)\(h).

Remark that p*" gives the probability distribution for n steps of the walk, starting at the
neutral element. For a probability measure p on a countable group H we denote H(u) its entropy,
defined by

H(p) = Y —p(g)log p(g)-

geH

One of the main properties of entropy is that the entropy of a product of measures is not
greater than the sum of their entropies. Combining that with the fact that taking image of a
measure by a function does not increase its entropy, we obtain H(u* \) < H(u) + H(X). Avez [2]
introduces the following definition:

Definition 2.2.2. The entropy of random walk (also called asymptomatic entropy) of a measure
on a H is defined as 1 )
group H is defined as lim,, oo =—4—.

Theorem 2.2.3 (Entropy Criterion (Kaimanovich-Vershik [27], Derriennic [12])). Let H be a count-
able group and v a non-degenerate probability measure on H with finite entropy. Then the Poisson
boundary of (H, i) is trivial if and only if the asymptotic entropy of 1 is equal to zero.

3 Some properties of groups of piecewise projective homeomor-
phisms

In Subsection 3.1 we study Pz and the group action locally around points of it. In Subsection 3.2,
using the results from the first subsection, to each element g € G we associate a configuration C.
We then also describe how to construct an element with a specific associated configuration.

3.1 Slope change points in G = H(Z)

Let g be a hyperbolic element of PSLs(Z). Let it be represented by (Z

d—at/tr(g)?—4
—_— Y

absolute value, this number is never rational. Furthermore, it is worth noting that Q(1/tr(g)% — 4)

Z) and denote tr(g) = a+d

its trace. Then its fixed points are As the trace is integer and greater than 2 in

is stable by PSLy(Z) and therefore by G (and G). If we enumerate all prime numbers as (p;)ien, we
have, for I # J < N finite, Q(\/Hid pi) N Q(\/]_[iEin) = Q. We just mentioned that Pz nQ = &

so we have
P= || Py ﬂ Q| /] e
IcN finite iel

where each set in the decomposition is stable by G. Note also that the fixed points of parabolic
elements of PSLy(Z) are rational. This actually completely characterizes the set Pz, as we will now

show that Pz Q (\/M) =Q (\/M) \Q:

Lemma 3.1.1. Take any s € Q(WE)\Q for some k € N. Then s € Py.
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Remark that k is not an exact square, as Q(v/k)\Q has to be non-empty.

Proof. Note first that to have v/#r2 — 4 € Q(vk) for some matrix it suffices to find integers z > 2
and y such that 22 — ky? = 1. Indeed, any matrix with trace 2z will then satisfy this, for example

—1 . . . . . .
(‘715 v . > This is known as Pell’s equality, and has infinitely many solutions for any k that is

not a square (see Mordell’s book [37, Ch. §]).
Write s = g + %’\/% for some integers p,q,p’,q¢'. Applying Pell’s equality for (p'q'q?)%k, we

obtain integers 2 and a such that £2 —a?(p'q'q*)?k = 1. In other words, 22 —y%k = 1 for y = p'¢'¢%a.

T 2pga b 2 4,2,2,2

We construct +,2q 2p q P where b = =L pga—l
q-q a T =g pqa 7eqe

matrix has s for a fixed point, and s is not rational, therefore the matrix is a hyperbolic element of

PSLy(Z). O

= p%¢%ak — ¢*>p®a € aZ. The

Remark 3.1.2. The break points a finite number of elements of H(Z) are all contained in the sets
Q(vVk) for a finite number of k, so Lemma 3.1.1 implies that H(Z) is not finitely generated.

In order to define configurations, we wish to study the slope changes at elements of Pz.
Consider g € G and s € Py, such that g(s +0) # g(s —0). Then it is easy to see that f =
g(y — 0)"g(y + 0) € PSLy(Z) fixes s. Therefore, in order to study the slope changes we need to
understand the stabiliser of s in PSLy(Z). We prove:

Lemma 3.1.3. Fiz s € PY(R). The stabiliser Sts of s in PSLa(Z) is either isomorphic to Z or
trivial.

Proof. Assume that Sts is not trivial, and let f € Sts be different from the identity. Clearly, f is
not elliptic. If f is hyperbolic, s € Pz, and if f is parabolic, s € Q U {o0}. We distinguish three
cases, that is s € Pz, s = o0 and s € Q.

We first assume s € Py. Let s = r +1/v/k with 7,7’ € Q and k € Z. Note that the calculations
in the beginning of the section yield that for every element f in Sts that is not the identity, f is

1 _r+r'Vk
hyperbolic and the other fixed point of fis 5 = r—r'vk. Leti= [ 3 2. | € PSLy(R) and
vk T Vk

consider the conjugation of Sts by i. By choice of i we have that i(s) = 0 and i(5) = co. Therefore
the image of St is a subgroup of the elements of P.SLs(R) that have zeros on the secondary diagonal.

b), for tr = a + d the trace of the

Furthermore, calculating the image of an example matrix (i d

matrix, we get

. b Vi At 0
. —1 _ 3 (2)
' (c d> ' 0 YEriu
2
Thus to understand the image of Sts we just need to study the elements of the form %ﬁ

with 22 — ky? = 4. This appears in a generalized form of Pell’s equation, and those elements are
known [37, Ch. 8] to be powers of a fundamental solution (which is also true for the classic Pell
equation if you identify a solution 2 —y?k = 1 with a unit element z + yv/k in Z[v/k]). This proves
that the image of Sts by this conjugation, which is isomorphic to Sts, is a subgroup of a group
isomorphic to Z. St is then also isomorphic to Z. The matrix with the fundamental solution in
the upper left corner defines a canonical generator for the group of elements of the form seen in (2),
and its smallest positive power in the image of Sts defines a canonical generator for Sts.
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Assume now s = 00. As we described in (1), the stabiliser of 0 is (cu,)nen, which is trivially
isomorphic to Z.
Lastly, assume that s = % € Q with p and ¢ co-prime. There exist m and n such that

m n

pm +gn = 1. Then i = p) € PSLy(Z) verifies i(s) = oo. Thus the conjugation by ¢ defines

an injection from the subgroup that fixes s into St = .A. We observe that non-trivial subgroups
of Z are isomorphic to Z, which concludes the proof. O

Having an isomorphism between St, (for s € Pz) and Z will be useful to us, so we wish to
know its exact form. We prove:

Lemma 3.1.4. Let s € Py. There exists ¢ps € RT that remains constant on the orbit Gs of s such
that f — log, (f'(s))) defines an isomorphism between St, and Z.

Proof. The derivative on the fixed point is multiplicative. Therefore for a fixed s, this follows from
Lemma 3.1.3 and the fact that subgroups of Z are isomorphic to Z (or trivial, which is impossible
here). What we need to prove is that ¢ remains constant on G's. Fix s and consider s’ € Gs. Let
j € PSLy(Z) be such that j(s) = s’. Then the conjugation by j defines a bijection between St; and
Sty Calculating the derivative on an element f € Sts we get (7£571) (") = 5/ (s)(G™1)'(4(s)) f'(s) =
f'(s), which proves the result. O

We further denote 1 : A+ Z (see 1) the map that associates n to ay, and 1, the conjugate
map for any r € Q. Remark that this is well defined by Lemma 3.1.3 and conjugations in Z being
trivial.

3.2 Configurations

Fix s € Pz and let ¢ = ¢ be given by Lemma 3.1.4. By the isomorphism it defines, there exists
an element g5 that fixes s, such that ¢.(s) = ¢s. As s ¢ Q, gs is hyperbolic. We associate to each
element of the piecewise PSLy(Z) group G (see Definition 2.1.2) a configuration representing the
changes of slope at each point of the orbit Gs = Gs of s, precisely:

Definition 3.2.1. To g€ G we assign Cy : Gs — Z by

Cy(7) =logy(g' (v +0)g'(y = 0)71).

Note that by choice of ¢ this value is well defined: indeed, g(y + 0)g(y — 0)~! € PSLy(Z),
fixes v, and is therefore in St,,.

Remark that by definition of G each configuration in the image of the association has a finite
support. Remark also that the configuration ignores information about the changes in slope outside
the orbit of s. For s € Q we further denote Cy(y) = 1, (¢’ (v + 0)¢'(y — 0)~1), which will have
similar properties. In the rest of the paper we will consider s € Pz unless otherwise specified. For
completeness’ sake, remark also that G = H(Z) < G and the orbits of G and G on s are the same
(as they are both the same as the orbit of PSLy(Z)) and therefore Definition 3.2.1 could be done
directly for G, and what we would obtain is the same as restraining from the current definition.

Lemma 3.2.2. For every s € Py, there exists an element hs € G such that hS(S—O)_lhs(S-‘rO) =gs
and all other slope changes of hs are outside Gs. In particular, Cp, = Js.
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Figure 1: Graphs of g5 and the identity Figure 2: Graphs of g5 and j;

! !
. . T
] A
: - Id :
{— 1 ¥ 4o g,
--- 9 g
g / .......... 5 /

Proof. Fix s € Py and let k = k, be the unique square-free integer such that s € Q(vk). We will
construct hy such that hg(s) = s. Note that in that case we have Chzl = —0s. This implies that if

we construct an element &, that verifies hy(s —0)~'h,(s +0) = g¥! and all other slope changes are
outside G's, choosing hs = ﬁsﬂ gives the result. In other words, we can replace gs with g;1. Seen
as a function on R, g, is defined in all points but f%. It is then continuous in an interval around s.
Moreover, if the interval is small enough, s is the only fixed point in it. Therefore for some ¢, either
gs(z) > z for every x € (s,s + €), or gs(z) < z in that interval. As we have the right to replace it
with its inverse, without loss of generality we assume that g5 is greater than the identity in a right
neighbourhood of of s.

Write s = r+7/v/k with r, 7’ € Q. Then the other fixed point of g, is its conjugate 5 = r—1'v/k.
Remark that it is impossible for f% to be between s and s’ as the function g; is increasing where it
is continuous and has the same limits at +00 and —oo (see Figure 1). If ' < 0, g is greater than
the identity in (s, ) as it is continuous there. In that case, it is smaller than the identity to the left
of the fixed points, but as it is increasing and has a finite limit at —oo, this implies (see Figure 1)
that —% < s. Similarly, if s > 3, g5 is increasing and greater than the identity to the right of s, but
has a finite limit at +o0, so —g > .

We will find a hyperbolic element j, verifying: the larger fixed point ¢ of js is not in G's and
t > —%, while the smaller fixed point £ is between s and 5, and j, is greater than the identity
between £ and ¢. If 7 < 0 consider the interval (Z,5). At its infimum, js has a fixed point while gg
is greater than the identity, and at its supremum the inverse is true. By the mean values theorem,
there exists § in that interval such that js(8) = gs(3) (see Figure 2). If ' > 0, consider the interval
(s, —g). At its infimum, g is fixed and therefore smaller than js, and at its supremum gs diverges
towards +oo while js has a finite limit. Again by the mean values theorem, there exists § in that
interval where g5 and js agree. As —g < t by hypothesis, in both cases we have s < § < t. We then
define

x r<s
() s<xz<3§
hofaw) = {9 8
Js(x) s<x<t
T t<z

Thus it would suffice to prove that we can construct js that verifies those properties and such
that 5 ¢ Gs. Note that 5 is a fixed point of g5 14,, so to prove that it is not in G's it will suffice to
study the trace of the latter. Remark that in this definition hy is strictly greater than the identity
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in an open interval, and equal to it outside (this is with the assumption on g, in the general case
hs has its support in an open interval, and is either strictly greater then the identity on the whole
interval, or strictly smaller).

Write r = %. By Bezout’s identity, there are integers m and n such that ¢gn — pm = 1.

Then the matrix ¢ = (TT% ‘Z) € PSLy(Z) verifies i.0 = %. Taking j, = i~ 'jsi it suffices to find J,
with fixed points outside G's, the smaller one being close enough to 0, and the greater one large
enough. Remark that the only information we have on g, is its trace, so this does not complicate
the computations for §.

' +ma  nilsd —m?

/
We will define js in the form ( , ) , a) where 272 — n2a?ly, = 1. Its fixed
a ' —ma

points are m + @\/E. By choosing m arbitrarily large, the second condition will be satisfied. Note

ig;li7l = ((f 2) and tr(gs)? —4 = 0%k. Calculating the trace of g; ' j we get tr(gs)a’ +a'b+mz +
¢

nze with z1, 22 € Z. Then, admitting that n divides 2’ — 1 (which will be seen in the construction

of z') we obtain for some 2; € Z, i € N:

tr(g;ljs)2 — 4 =mz3 +nz + a0 + 2&'53:'757“(95) + 2%tr(gs)? — tr(gs)? + tr(gs)? — 4
= mazs + nzs + a’2b® + 2a’l~)tr(gs) + n2a”1,tr(gs)? + 0%k (3)
= mz3 + nze + 0% + 2d'btr(gs) + o°k.

Take a prime p; that is larger than &k and b(¢r(gs) +2). There is an integer a” < ps such that
b(tr(gs) + 2)a” = —1 mod ps. Take a = 0%ka”. Then

a0 + 2a'btr(gs) + 0*k = 0*k(b(tr(gs) + 2)a” + 1)(b(tr(gs) — 1)).

As Z[ps] is a field, clearly b(tr(gs) —2)a” # —1 mod ps. As b(tr(gs) +2)a” < p?, the product
is divisible by ps but not p2. We will choose m and n divisible by p?, which will then ensure that
the value in (3) is divisible by ps but not p2, proving that § ¢ Gs.

All that is left is choosing n and m. As we just noted, we need them to be multiples of p2.
Aside from that n needs to satisfy 2/2—n2a?ly = 1, I, must not be a square times k and we need to be
able to make m —n+/I; arbitrarily small. Write m = p?m’ and n = p?n/. Then m/’ can be anything so
long as m — n+/I; becomes arbitrarily small. In other words, we are only interested in the fractional
part of n/4/ls. We choose 2’ = n'2a"p3 — 1 and will prove that the conditions are satisfied for n’
large enough. Then 22 — n2a’2l; = 1 is satisfied for Iy = ps(n"2a?p3 — 2). In particular, p, divides

ls but its square does not, so I, is not equal to a square times k. Moreover, v/l = 1/(n/a’p3)2 — 2p;
and as the derivative of the square root is strictly decreasing, /(n’a’p3)? — 2p, — n’a’p? — 0 for
n' — 0. Its factorial part then clearly converges towards 1, which concludes the proof. O

For a product inside the group é, by the chain rule we have

(9291)'(7) = g5(91(7)) g1 (7)
and thus

Coa1(7) = Cg () + Ca(92(7)) (4)

That gives us a natural action of G on Z&* by the formula (g, C) — C,+S9C where S9C(v) =
C(g(7)). It is easy to check that it also remains true for s € Q.

10
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Lemma 3.2.3. There is no configuration C : Gs — Z such that C = Cp, + ShC.

Indeed, applying (4) and taking the value at s we get a contradiction.
) Consider g and h such Cy = Cp,. We have Crg = Cy1 + nglc’g and thus Cpy1 = Cg1 +
S9Cj, = Crg = 0. We denote

Hy={geG:C, =0}
Then:

Lemma 3.2.4. The element hs and the subgroup Hs generate G for every s € Py,

Proof. We show for g € G by induction on ||Cy|1 = 3, cqs |Cq(2)] that it is in the group generated
by {hs} U Hs . The base is for |Cy[; = 0, in which case we have Cy = 0 and the result is part of
the statement hypothesis. We take g € G and assume that every element with smaller I! measure of
its configuration is in the group generated by {hs} U Hs;. We take any a € supp(Cy). Without loss
of generality, we can assume that Cy(cr) > 0. As g(a) € Gs, by Lemma 3.2.5 there exists h € Hy
such that h(s) = g(a) and Cj, = 0. Let § = hhsh™!. As hs € {hs} U Hy, we have § € ({hs} U Hs).
Applying the composition formula (4) we obtain Cz(z) = 0 for  # g(a) and Cy(g(e)) = 1. We
consider § = §1g. If z # g(a), by the composition formula (4) we get Cz(z) = Cy(x), and at a we
have Cg(a) = Cy(a) — 1. By hypothesis we then have g € ({hs} U H,), and as § is also included in
this set, so is g. O

Lemma 3.2.5. For any g € PSLy(Z) and v € R there exists h € Hy such that g() = h(%).

Proof. By Monod’s construction in [36, Proposition 9], we know that we can find h € G that agrees
a b+ra
c d+re
contains infinity and the identity otherwise. To have this result, what is required is that either r or
—r (depending on the situation) be large enough. Clearly, Cj, = 0 would follow from slope change
points of ¢ being outside Gs (as neither of them is infinity). In particular, it is enough to prove

that for some infinitely large r, the fixed points of (i Zi:ﬁ) are outside Q(+vk). The trace of

that matrix is (a + d) + rc. Let p be a large prime number that does not divide 2, k or ¢. As ¢ and
p are co-prime, there exists ro such that a + d + rgc = p + 2 (mod p). Then for every i € Z, we
have (a + d + (ro + p?i)c)? — 4 = 4p(modp?). As p and 4 are co-prime, this implies that for each
r = 19 + p*i the fixed points of that matrix are not in Q(+v/%) as p does not divide k. O

with g on v of the form ¢~1g where ¢ = ( > in the interval between its fixed points that

4 Convergence condition

Fix s € Pz and let us use the notations from Subsection 3.2. For a measure p on G we denote
C, = Ugesuppw supp(Cy) its "support" on Gs. That is, C;, < Gs is the set of points in which at
least one element that is inside the support of x in the classical sense changes slope. We thus obtain
the first result

Lemma 4.1. Consider the piecewise PSLy(Z) group G (see Definition 2.1.2). Let p be a measure
on a subgroup of G such that C,, is transient with respect to p for the natural action of G on R and
hs is in the semigroup generated by supp(u). Then the Poisson boundary of p on the subgroup is
not trivial.

11

46



Proof. Consider a random walk g, with g,+1 = hypg,. For a fixed v € Gs we have

Cgui1(7) = Cgu (V) + Ch, (9a(7))

By the hypothesis of transiency this implies that Cj, () stabilises. In other words, C,,
converges pointwise towards a limit Cy,. This defines a hitting measure on Z* that is a quotient
of 1’s Poisson boundary. Moreover, it is pi-invariant by the natural action on Z%. It remains to
see that it is not trivial. Assume the opposite, which is that there exists a configuration C' such
that for almost all walks, the associated configuration Cy, converges pointwise to C. By hypothesis
there are elements hy, ..., hy, with positive probability such that h,,hm—1...h1 = hs. There is a
strictly positive probability for a random walk to start with hphpy—1...h1. Applying (4) we get
C = Ch, + S"C, which is contradictory to Lemma 3.2.3. O

This lemma, along with Lemma 3.2.4 implies:

Lemma 4.2. Fiz s € Py. Let p1 be a measure on G = H(Z) that satisfies the following conditions:
(i) The element hg belongs to the support of p,
(1) The intersection of the support of y with the complement of Hs is finite,
(111) The action of u on the orbit of s is transient.
Then the Poisson boundary of v is non-trivial.

We will now show how measures satisfying whose assumptions can be constructed. Remark
that the question of existence of a measure with non-trivial boundary has already been solved by
Frisch-Hartman-Tamuz-Vahidi-Ferdowski [16]. In our case, notice that A < Hy (see (1)), and it
is isomorphic to Z. We can then use a measure on A to ensure transience of the induced walk
on the orbit. To prove that, we use a lemma from Baldi-Lohoué-Peyriere [3] (see also Woess [51,
Section 2.C,3.A]). Here we formulate a stronger version of the lemma, as proven by Varopoulos [49]:

Lemma 4.3 (Comparison lemma). Let Pi(x,y) and Ps(x,y) be doubly stochastic kernels on a
countable set X and assume that Py is symmetric. Assume that there exists € = 0 such that

Pl(.f, y) = EPZ(x7y)
for any x,y. Then

1. For any 0 < f e I2(X)

PNGUNIEED W T oY

neN neN

2. If Py is transient then so is Py (for any point x € X, it follows from (1) applied to f = ;).

Here, doubly stochastic kernels means that the operators are reversible and the inverse is also

Markov. It is in particular the case for P(x,y) = u(yxz~!) for some measure on a group (as the
inverse is (z,y) — p(zy™1)).
Remark 4.4. If X is a transient measure on A and pu satisfies conditions (i) and (ii) of Lemma 4.2,
then the comparison lemma by Baldi-Lohoué-Peyriere (Lemma 4.3) implies that e\ + (1 — &)u
satisfies all the conditions of the lemma for any 0 < ¢ < 1. In other words, this is a way to construct
non-degenerate symmetric measures on G with non-trivial Poisson boundary.

For completeness’ sake, we show that there exist measures positive on all of G that have

non-trivial boundary.

12
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Lemma 4.5. Let p be a measure on a group H with finite entropy and non-zero asymptotic entropy
and which generates H as a semigroup. Then there exists a measure i with support equal to H that
also has finite entropy and non-zero asymptotic entropy. Furthermore, if u is symmetric, so is [i.

Proof. Define i = éZieN ”;1. By a result of Kaimanovich |23, Corollary to Theorem 4] we get

- i

ieN "
Moreover, as the entropy of 2*" is not smaller than the entropy of i, finite asymptotic entropy
implies finite entropy. O

From this lemma and the entropy criterion Theorem 2.2.3 it follows that to have a measure
positive on all of G with non-trivial boundary it suffices to construct a measure verifying the
conditions of Lemma 4.2 with finite asymptotic entropy, which we can achieve with the construction
presented in Remark 4.4.

5 Thompson’s group as a subgroup of G = H(Z)

In [30] Kim, Koberda and Lodha show that any two increasing homeomorphisms of R the supports
of which form a 2-chain (as they call it) generate, up to taking a power of each, a group isomorphic
to Thompson’s group F. Let us give the exact definition of this term. For a homeomorphism f of
R we call its support supp(f) the set of points x where f(x) # x. Remark that we do not define
the closure of that set as support, as it is sometimes done. Consider four real numbers a, b, ¢, d with
a < b < ¢ < d. Take two homeomorphisms f and g such that supp(f) = (a, c) and supp(g) = (b, d).
In that case we say that their supports form a 2-chain, and the homeomorphisms generate a 2-
prechain group. In other words, two homeomorphisms generate a 2-prechain if their supports are
open intervals that intersect each other but neither is contained in the other.

Clearly, there exist many such pairs in G. We will give a simple example. Fix s and find
positive rational numbers 7 and 7 such that ¥ < s < 74 #,/ps < t. Recall that p, is a prime larger
than k. Then choose a hyperbolic element § that fixes & + 7, /p, and define

E( ) gﬁ(x) F— 7 ps<w<7*+f'1/ps
) =
° T otherwise.

By definition of 7 and 7, hs and hy clearly form a 2-prechain, and thus up to a power they
generate a copy of Thompson’s group (see [30, Theorem 3.1]). We will denote a, the action F' ~ R
this defines. To obtain the convergence results, we need to prove that the induced random walks
on the Schreier graphs of certain points are transient. By the comparison lemma by Baldi-Lohoué-
Peyriere (Lemma 4.3) it would suffice to prove it for the simple random walk on the graph, which
is why we will study its geometry. In the dyadic representation of Thompson’s group, the geometry
of the Schreier graph on dyadic numbers has been described by Savchuk [45, Proposition 1]. It is a
tree quasi-isometric to a binary tree with rays attached at each point (see Figure 4), which implies
transience of the simple random walk. For a different proof of transience see Kaimanovich [26,
Theorem 14]. We will see that the Schreier graph has similar geometry in the case of a, (see
Figure 3).

Lemma 5.1. Consider two homeomorphisms f and g of R the supports of which are supp(f) = (a,c)
and supp(g) = (b,d) with a < b < ¢ < d. Denote H the group generated by f and g. Then the
simple random walk on the Schreier graph of H on the orbit of b is transient.
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Proof. Up to replacing f or g with its inverse, we can assume without loss of generality that f(z) > =
for = € supp(f) and g(x) > « for x € supp(g). Denote by I' the Schreier graph of H on the orbit of
b. The vertices of this graph are the points of the orbit Hb of b by H, and two points are connected
by an edge if and only if f, g, f~! or ¢g~! sends one point into the other. Denote by I' the subgraph
defined by the vertexes that belong to the closed interval [b,c]. At every point x of T' such that
x ¢ [b,c], in a neighbourhood (x — €,2 + €) of x, one of the two elements f and g acts trivially,
and the other one is strictly greater than the identity map. Without loss of generality, let f act
trivially. Let ig be the largest integer such that g% (z) € [b,¢]. Then the set of points (g°(z))isi,
is a ray that starts at an element of T'. As the simple random walk on Z is recurrent (see [13,
Chapter 3, Theorem 2.3|), the walk always returns to I in finite time, and that part of the graph

(T') is what we need to study.

Replacing, if necessary, f or g by its power, we can assume that g~'(c) < f(b). Denote
A=[hg )] = g\ el), B = bl = f([be]) and C = (g~ (c), [(B)) = [b,c]\(A L B).
Consider = € T with = # b and = ¢ C. Consider a reduced word cpc,_1...c1 with ¢; € {fE!, g1}
that describes a path in T from b to z. In other words ¢,cp_1 ... ¢1(b) = x and the suffixes of that
word satisfy cjci—1...c1(b) € I for every ¢ < n. The fact that the word is reduced means that
¢ # ci;ll for every i. We claim that if = € A, this word ends with g~ = ¢,,, and if € B, ¢, = f.

We prove the latter statement by induction on the length of the word n. If a word of length
one, it is g since f fixes b and since g~1(b) ¢ [b, c]. As g(b) € B this gives the base for the induction.

Assume that the result is true for any reduced word of length strictly less than n whose
suffixes, when applied to b, stay in [b, c¢]. We will now prove it for z = ¢p¢,—1 ... c1(b). We denote
Y = Cp—1Cn—2...c1(b) the point just before x in that path. We first consider the case x € B (as we
will see from the proof, the other case is equivalent). We distinguish three cases: y € A, y € B and
yeC.

If y € A, by induction hypothesis we have ¢,_1 = g~*. As the word is reduced we thus have
¢, # g. However, from y € A and x € B we have y < x. Therefore, ¢, ¢ {f~!,97!}, and the only
possibility left is ¢, = f.

If y € B, by induction hypothesis we have ¢,—; = f. Therefore, as the word is reduced,
cn # f~1 From g~'(c) < f(b) it follows that g(B) N [b,c] = &. As x € B, this implies that ¢, # g.
Similarly, g~'(B) < A, therefore ¢, # g~'. The only possibility left is ¢, = f.

If y € O, consider the point 3’ = ¢,_a...c1(b). If ¢ € A, by induction hypothesis ¢, = g~ 1.
Then ¢;,—1 # ¢g. Asy > ¢/, this implies that ¢,—; = f. However, g(A) < B, which is a contradiction.
In a similar way, we obtain a contradiction for ¢ € B. However, both f~!(C) and g(C) are outside
[b,c], while f(C) = B and g~1(C) = A. Therefore the case y € C is impossible by induction
hypotheses on ¢,—3...cy.

This completes the induction. Remark that we also obtained I' » C' = @&, so the result holds
for all points of I'. In particular, if two paths in T’ described by reduced words arrive at the same
point, the last letter in those words is the same, which implies that I is a tree. Remark also that
the result implies that c ¢ I as ¢ € B and o) =ec

Moreover, for a vertex = € A, we have that f(z), g(z) and g~ () also belong to . Similarly,
for x € B, g~ '(z), f(z) and f~'(z) are in T. Therefore every vertex aside from b has three different
neighbours. The simple walk on T is thus transient. O

1

By the comparison lemma by Baldi-Lohoué-Peyriere (Lemma 4.3), this implies transience on
the Schreier graph of s for any measure on G such that h, and A, are in the semigroup generated
by the support of the measure. If the support of a given measure generates G as a semigroup,
conditions (7) and (7i¢) in Lemma 4.1 are then automatically satisfied. In particular, any measure
w1 on G that generates it as a semigroup and such that there exists s for which supp(p) N (G\Hj)
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is finite has a non-trivial Poisson boundary.
In the proof of Lemma 5.1 we obtained a description of the graph of as, which is similar to
the one by Savchuk [45] in the case of the dyadic action:

Remark 5.2. Consider two homeomorphisms f and g of R the supports of which are supp(f) = (a, ¢)
and supp(g) = (b,d) with a < b < ¢ < d. Denote H the group generated by f and g. Then the
Schreier graph of H on the orbit of b is described in Figure 3 (solid lines are labelled by f and
dashed lines by g).

Figure 3: Schreier graph of as

.~

\ 1
¥ N
b

Proof. In the proof of Lemma 5.1 we have shown that for every vertex « € I' that is not b, « has
exactly three different neighbours in I. We also proved that T is a tree. It is therefore a binary
tree. Furthermore, if 2 € A, it is equal to g~ (y) where y is closer to b than z (in the graph), and if
x € B, z = f(y) where y is again closer to b. We think of y as the parent of x. Then every vertex x
has two children: left child g~!(z) and right child f(x). Furthermore, if x is a left child, z € A and
f~Y«) ¢ T. Equivalently, if z is a right child, g(z) ¢ T. O

Compare to the Schreier graph of the dyadic action as described by Savchuk [45, Proposi-
tion 1](see Figure 4).

Figure 4: Schreier graph of the dyadic action of F' for the standard generators

6 Schreier graphs of finitely generated subgroups of H(Z) and G

We will build on the result from Remark 5.2. In a more general case, the comparison lemma by
Baldi-Lohoué-Peyriere (Lemma 4.3) implies that the existence of a regular subtree (like I') is enough
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to ensure transience on the Schreier graph. To obtain such a tree, we only need the assumptions of
the remark inside the closed interval [b, ¢]. We will now prove a lemma that ensures transience while
allowing the graph to be more complicated outside [b, ¢]. This will help us understand subgroups
of G for which the supports of their generators are not necessarily single intervals.

Lemma 6.1. Let f, g be homeomorphisms on R and assume that there exist b < ¢ such that g(b) = b,
f(e) = ¢, (b,c] = supp(g) and [b,c) < supp(f). Assume also that there exists s € R with s < b such
that for some n € Z, f™(s) € [b,c]. Let H be the subgroup of the group of homeomorphisms on R
generated by f and g. Then the simple walk of H on the Schreier graph T of H on the orbit s is
transient.

Proof. Without loss of generality, f(z) > z and g(z) > z for x € (b, ¢) (and the end point that they
do not fix). In that case clearly n > 0. We will apply the comparison lemma by Baldi-Lohoué-
Peyriere (Lemma 4.3) with P; defined on I' as the kernel of the simple random walk of H on I'. In
other words, Pi(z, f(z)) = Pi(z, f~X(z)) = Pi(z,g(z)) = Py(z, g7 (2)) = 1 for every z € T. Let us
now define P». Let a be the largest fixed point of f that is smaller than b, and d the smallest fixed
point of ¢ that is larger than ¢. For x € (a,b) we define n(x) = min(n|f™(x) € [b,c]). Similarly, we
define for x € (¢, d), m(z) = min(m|g~—™ € [b,c]). We define

1 zelb 1 ze[b

Lz e (a,b) and n(z) is odd 3 g e (a,b) and n(z) is odd
Poa o)) = {1 T @Dadn@ s odd p o)) p1re o byand vl

4 z€(a,b) and n(x) is even 7 € (a,b) and n(z) is even

0 otherwise. 0 otherwise.

1 zelb] 1 zelbc]

3z e(¢,d) and m(z) is odd L2 e (¢,d) and m(z) is odd
Paaga) = {1 “Eeamdm)isodd p o gy {1 relod and @)

7 € (c,d) and m(z) is even 5 e (c,d) and m(x) is even

0 otherwise. 0 otherwise.

Of course, we have Py(z,y) = 0 otherwise. This clearly defines a stochastic kernel (as the
sum of probabilities at each x is 1), and it follows directly from the definition that it is symmetric.
It is therefore doubly stochastic and symmetric.

We now check that it is transient similarly to Lemma 5.1. Indeed, take a point x € [f(b), |
(respectively z € [b, g~ '(c)]). Consider the subgraph T'(z) of the vertices of the form ¢,¢,_1 . .. c1(2)
with ¢ici1...c1(z) € [b,c] for every i and ¢ € {f~1, g7} (respectively ¢; € {g, f}). Equivalently
to Lemma 5.1, T'(z) is a binary tree. Moreover, the graph T'(z) defined by the vertices of the form
& (y) eI with é € {g, f'}, n e Nand y € T'(z) is equivalent to the one in Lemma 5.1. In particular,
the simple random walk on it is transient. Take any y € I' n (a,d). Then either f"(y) € [f(b), ]
for some n, or g~ € [b,g !(c)]. In either case, there is x such that y belongs to I'(z). By the
comparison lemma by Baldi-Lohoué-Peyriere (Lemma 4.3), we have >, (P3'dy, 6, < oo. Therefore
P; is transient. We apply Lemma 4.3 again for P, > %PQ, which concludes the proof. O

Remark that with this result we can apply the comparison lemma by Baldi-Lohoué-Peyriere
(Lemma 4.3) to obtain transience for a random walk induced by a measure on a subgroup of the
piecewise PSLs(Z) group G (see Definition 2.1.2), the support of which contains two such elements
and generates that subgroup as a semi-group.

For the sake of completeness, we will also consider amenability of Schreier graphs of subgroups
of G. A locally finite graph is called amenable if for every e there exists a finite set of vertices S
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such that |0S]/|S| < & where 0S is the set of vertices adjacent to S. This closely mirrors Folner’s
criterion for amenability of groups. In particular, a finitely generated group is amenable if and
only if its Cayley graph is. In his article, Savchuk [45] shows that the Schreier graph of the dyadic
action of Thompson’s group F' is amenable. He also mentions that it was already noted in private
communication between Monod and Glasner. The amenability of the graph comes from the fact
that sets with small boundary can be found in the rays (see Figure 4). We will prove that for finitely
generated subgroups of G we can find sets quasi-isometric to rays.

Remark 6.2. Consider a point s € R and a finitely generated subgroup H of the piecewise PSLy(Z)
group G (see Definition 2.1.2). Let a = sup(Hs). Let S be a finite generating set and consider the
Schreier graph I" defined by the action of H on Hs. Then there is b < a such that the restriction
of T to (b,a) is a union of subgraphs quasi-isometric to rays.

Proof. As all elements of H are continuous (when seen as functions on R), they all fix a. Therefore
they admit left germs at a. By definition, the germs belong to the stabiliser St, of a in PSLo(Z).

By Lemma 3.1.3, St, is cyclic. Let h € PSLy(Z) be a generator of St,. Then the left germ
at a of any element s; € S is equal to h™ for some n; € Z. Up to replacing h with hECP{nis€sh)
we can assume that there exists g € H such that the left germ at a of g is h. Let (b, a) be a small
enough left neighbourhood such that the restrictions of all elements of S U {g} to (b,a) are equal
to their left germs at a. For example, one can choose b to be the largest break point of an element
of S'u {g} that is smaller than a.

Consider the following equivalence relation on Hs n (b,a): x ~ y if and only if there exists
n € Z such that h™(x) = y. As the restriction of h to (b, a) is an increasing function, an equivalence
class is of the form (h"(x))nen for some x € (b, a). We will prove that this set is quasi-isometric to a
ray (when seen as a subgraph of T'). It is by definition of b preserved by elements of S. Furthermore,
the graph distance d is bilipschitz to the standard distance d’ on N. Indeed, on one hand, we have
d> ————d. On the other hand, d < |g|d’ where |g| is the word length of g. This proves the

max([n;[:s;€S5)

result. O

This implies:

Remark 6.3. Consider a point s € R and a finitely generated subgroup H < G. The Schreier graph
defined by the action of H on Hs is amenable.

As mentioned in the introduction, the result of Juschenko and Zheng holds true not only for
the Schreier graph of Thompson’s group F', but also for the Schreier graphs of finitely generated
subgroups of G:

Remark 6.4. Consider a point s € R and a finitely generated subgroup H < G. There is a non-
degenerate measure such that the induced random walk on H's has trivial Poisson boundary.

This follows from the results of a recent paper by Schneider and Thom [46, Section 6]. We will
adapt their result on Thompson’s group F. In that section, they consider a topological subgroup
of Sym(X) for a countable set X. If the action is strongly transitive, Corollary 6.2(3) states that
the subgroup is amenable (as a topological group, with the induced topology from Sym(X)) if
and only if for any n, there is a non-degenerate probability measure such that the induced walk
on n-element subsets of X has trivial Poisson boundary. The considered action of F' is strongly
transitive. It also makes F' a subgroup of the group of order-preserving automorphisms of the
dyadic numbers, which we will denote Aut(Z[4],<). The latter has been proven to be (extremely)
amenable as a topological group by Pestov [43]. A more detailed presentation of extreme amenability
can be found in Kechris-Pestov-Todorcevic [28], where they provide the theory allowing to obtain
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extremely amenable groups from structural Ramsey theory. In particular, the extreme amenability
of Aut(Z[3}], <) is shown [28, 6(A)(iv)] to follow from the classical theorem of Ramsey.

Schneider and Thom thus obtain that for any n, there is a non-degenerate probability measure
on F' such that the induced random walk on n-element sets of dyadic numbers has trivial boundary.
Tt is worth noting that this result extends previous work by Juschenko [20], who proved it for n = 2.
Schneider and Thom also point out that since there is a free non-abelian group that is a subgroup
of Aut(Z[%], <), and that the latter acts strongly transitively, Aut(Z[%]7 <) provides an example of
an action of a non-amenable group (in the discrete sense of amenability) such that for every n there
is a measure with trivial boundary of the walk on n-element subsets, which confirms Juschenko’s
expectations.

For H < G, its action on H's presents an embedding into Aut(Hs,<). Applying [46, Corol-
lary 6.2(1)], Remark 6.4 follows. Notice that the remark only treats the case n = 1. To obtain the
result for n-element subsets we would need to prove strong transitivity.

7 Convergence conditions based on expected number of break points

The aim of this section is to describe sufficient conditions for convergence similar to Theorem 4.1
that do not assume leaving C), (which is potentially infinite). The ideas presented are similar
to the arguments used in studies of measures with finite first moment on wreath products (see
Kaimanovich |24, Theorem 3.3|, Erschler [15, Lemma 1.1]). Consider the piecewise PSLy(Z) group
G (see Definition 2.1.2) and a measure g on it. We think of the measure as something that could
be positive on all points of G. Fix s € Pz U Q and denote, for g € G, Ay = supp(Cy) (for s € Q,
see discussion after Definition3.2.1 and after the proof of Lemma 3.1.4). Take x € G's and consider
a random walk (g )nen with increments hy,, that is gn+1 = hngn. Then by (4),

Cy(x) # Cyp i (2) = gn(2) € Ap,.

In other words, Cy, (z) converges if and only if g,(z) € A, only for a finite number of values
of n. For a fixed n, the probability that g,(z) belongs to Ay, is

P00, > p(h)xa,)

heG
where p is the induced kernel on Gs. Taking the sum over n we get:

Lemma 7.1. Fiz 0o € Gs. For a random walk g, on G with law , the value Cy, (0) converges with
probability 1 if and only if

D00, D) p(h)xa,) < o

neN hel

where p is the induced kernel on Gs.

We define f,, as

f,u = Z ﬂ(h)Xsupp(Ch) (5)
heG

and show that it suffices for f, to be ' and p transient :
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Lemma 7.2. Let s € Pz u Q be fized. Take a measure p on G such that the induced random walk
on the Schreier graph on Gs is transient and f, € IY(Gs) (as defined in (5)). Then for a random
walk gn, on G with law p, the associated configuration Cy, converges pointwise with probability 1.

Remark in particular that E[Br] < co implies f,, € 11(G), where Br(g) is the number of break
points of g. Indeed, for any fixed s, |f,[1 is the expected number of break points inside the orbit
G's, which is smaller than the total expected number of break points. This is, of course, also true
for measures on H(Z) as H(Z) < G.

Proof. Fix a point o in the Schreier graph on G's. We denote by p the induced kernel on Gs and
write f = f,. We have

D00, £y =D D p(0,2) f(z) = Y. fl@) Y] p*(0,2) (6)

neN neN zeG's zeGs neN
where we will have the right to interchange the order of summation if we prove that the right-
hand side is finite. We write p**(0,2) = p*™(z,0) where § is the inverse kernel of p. Let P(z,v)
be the probability that a random walk (with law p) starting at x visits y at least once. Then
3 en (@, y) = P(2,9) Y " (4, y)- Indeed, 3, 5*" (2, y) is the expected number of visits of
y of a walk starting at  and random walk that starts from x and visits y exactly & times is the
same as the concatenation of a walk that goes from x to y and a walk that starts from y and visits

it k£ times. Thus

S p(0,a) = 3 5@ 0) = Pla,0) Y 5 (0,0) < 3 5(0,0), (7)

neN neN neN neN

Then if we denote c(p,0) = Y, .y p*"(0,0),

D3 f@) D P (0, 2) < cp,0)|fli < . (®)
zeG's neN
Applying Lemma 7.1 we obtain the result. O

Combining this result with the result of Lemma 6.1 which gives transience of the induced
random walk on Gs under certain conditions, we obtain:

Lemma 7.3. Consider the piecewise PSLy(Z) group G (see Definition 2.1.2). Let H be a subgroup
of G. Assume that there exist b < ¢ such that g(b) = b, f(c) = ¢, (b,c] < supp(g) and [b,c)
supp(f) for some f,g € H (see Figure 5 on page 21). Assume also that there exists s € Pz u Q
and es > 0 with s < b such that for some n € Z, f™(s) € [b,c], and also g(s —€) = s — ¢ and
g(s +¢€) # s+e for every 0 < € < e5. Then for any p on H with finite first break moment
(E[Br] < o) such that supp(p) generates H as a semigroup, the Poisson boundary of p on H 1is
non-trivial.

Proof. By Lemma 6.1, the simple random walk on the Schirer graph of s by {(f,g) is transient.
By the comparison lemma by Baldi-Lohoué-Peyriere (Lemma 4.3), as the support of p generates
H as a semigroup, the random walk by u on the Schreier graph of s is then transient. Applying
Lemma 7.2, the associated configurations converge as p has finite first break moment. However, by
hypothesis on s, g(s) = s and Cy(s) # 0. Therefore, as g € H, the limit configuration cannot be
singular. Thus the Poisson boundary of p on H is non-trivial. O

For finitely generated subgroups of CNT', from Lemma 7.2 we have:
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Remark 7.4. The amount of break points is subadditive in relation to multiplication. In particular,
if a measure p has finite first moment, then it has finite first break moment.

Corollary 7.5. Consider a measure p on CNJ, the support of which generates a finitely generated
subgroup, and such that p has a finite first moment on that subgroup. Assume that there exists
s € Py such that the random walk on the Schreier graph on Gs of this subgroup is transient. Then,
for almost all random walks on G with law 1, the associated configuration converges pointwise.

Proof. Follows from Remark 7.4 and Lemma 7.2. O

In such cases it is enough to prove that the associated limit configuration is not always the
same, which can require case-specific arguments. We already have it in the case of Thompson’s

group:

Proof of Corollary 1.3. Fix s € Pz and consider the action as of Thompson’s group F on R as
defined in Section 5. Take a measure p on F' that generates it as a semigroup. From Lemma 5.1
and the comparison lemma by Baldi-Lohoué-Peyriere (Lemma 4.3) the walk p induces on the orbit
of s is transient. Applying Corollary 7.5 this implies that the associated configuration stabilises,
and by Lemma 3.2.3, it cannot always converge towards the same point. Therefore the Poisson
boundary of u is not trivial. O

We remark that arguments similar to the ones in this section can also be made for the action
of Thompson’s group considered in Kaimanovich’s article [26].

In a more general case, we can use the stronger result by Varopoulos of the comparison
Lemma 4.3 in order to prove that if the transient walk diverges quickly enough, we can also have
the result for f, € 1?(Gs) (and not necessarily in I'):

Lemma 7.6. Fiz s € Py. Consider a measure pio such that f = fuo € 12(Gs). Consider \ on H,
such that Y, (N f, f) < 0. Let p=eX+ (1 —e)po with 0 <e < 1. Then for almost all random
walks on G with law p, the associated configuration converges pointwise.

Proof. Clearly, f, = (1 — e)f Then by the comparison Lemma 4.3 we get:

1 _
D s fuy < =3 2N ) < 0.
e(l—¢)
neN neN
Denote f = fu. Consider x € Pz such that it is possible for the value of the associ-
ated configuration at = to change. In other words, there is ng € N and y € Pz such that z €
supp(u*™)y and f(y) > 0. Denote by p the probability to reach x from y. Then > {u*"0y, f) >
P Y nen* 00, 5. In particular, if the first is finite, so is the second. However, we clearly have

Dt oy, [ < ﬁ D nenit*™ f, > which concludes the proof. O

In particular, if for any s all associated configurations cannot be stable by all the elements of
{supp(u)), we obtain a non-trivial boundary.

Corollary 7.7. Fiz s € Pz. Consider a measure o such that hs € supp(po)*™ for some ng and
[ = fu € 1’(Gs). Consider A on Hs such that 3, (N f, )y < 0. Let p = el + (1 —e)pug with
0 <e < 1. Then the Poisson boundary of 1 on the subgroup generated by its support is non-trivial.

Proof. Follows from Lemma 7.6 and Lemma 3.2.3. O

Remark that there always exists a symmetric measure A satisfying those assumptions as
A c Hy (A was defined in (1)).
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Figure 5: Graphs of f and ¢ and positions of b Figure 6: Graphs of f and ¢ in (a, )

and ¢
C g b/
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8 An algebraic lemma and proof of the main result

Consider the piecewise PSLy(Z) group G (see Definition 2.1.2). Take a subgroup H of G. In
Lemma 7.3 we proved that if there are f,g € H and b, ¢, s € R that satisfy certain assumptions, for
every measure f on H the support of which generates H as a semigroup and that has finite first break
moment E[Br], (H,u) has non-trivial Poisson boundary. To prove the main result (Theorem 1.2)
we will study subgroups that do not contain elements satisfying those assumptions.

Lemma 8.1. Let H = (hq, ..., h) be a finitely generated subgroup of G. Then either H is solvable,
or the assumptions of Lemma 7.3 are satisfied for some f,ge H, b,c,s € R.

We recall that for f € C:', and a,b € R such that f(a) = a and f(b) = b, we defined (see
Definition 2.1.3) f| (45 € G by fl(ap)(2) = f(z) for z € (a,b) and = otherwise.

Proof. We first check that with the appropriate assumptions on (f, g,b,c¢), s always exists:

Lemma 8.2. Let H be a subgroup of G. Assume that there exist b < ¢ such that g(b) = b, f(c) = c,
(b,c] = supp(g) and [b,c) = supp(f) for some f,g € H. Then there exist f',g',b',c and s that
satisfy the assumptions of Lemma 7.5.

The assumptions of the lemma are illustrated in Figure 5. Recall that we defined supp(f) =
{zeR: f(z) # z}.

Proof. Without loss of generality assume that b is minimal among all b for which there exists ¢ such
that either (f,g,b,c) or (g, f,b,c) satisfy the assumptions of this lemma. We can assume without
loss of generality that f(z) > z and g(z) > z for x € (b, ¢) (otherwise, we can replace either or both
with their inverse). Let a be the largest fixed point of f that is smaller than b.

By minimality of b we clearly have that g(a) = a. The stabiliser St, of a in PSLy(Z) is
cyclic by Lemma 3.1.3. Therefore there exist k and I such that f*(z) = ¢'(z) for = € (a,a + ¢)
for some € > 0. Take (f’,¢') = (f, f~*¢"). By our assumption, f* and g' are strictly greater then
the identity function in (b,c). As they are continuous and each fixes an end of the interval, by
the mean values theorem there exists b’ € (b, ¢) such that f%(¥) = g'(t'). Then (f/,¢") and (V/,¢)
satisfy the assumptions of this lemma. Furthermore, f~*¢' is the identity in a small enough right
neighbourhood of a, which implies that there exists an element s that satisfies the assumptions of
Lemma 7.3. O
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We now assume that the assumptions of Lemma 7.3, and therefore also the assumptions of
Lemma 8.2, are not satisfied by any couple of elements in H. We will prove that H is solvable. For
any element in g € C:', its support supp(g) is a finite union of (not necessarily finite) open intervals.
The intervals in the support of h; we denote I; = (al,b]) for j < r; where r; is the number of
intervals in the support of h;. In terms of those intervals, the negation of Lemma 8.2 means that
for every (4, 7) and (i, j'), either I} n I]z; =g, or I} c 1;17 or I]’i c Ij. We further check that if the
inclusion is strict, it must be strict at both extremities. Specifically:

Lemma 8.3. Let H be a subgroup of G. Assume that there exista <b <V € R U {—c0} such that

fla) = g(a) = a, f(b) =b, g(t) =V, (a,b) = supp(f) and (a,V) < supp(g) for some f, g H (see
Figure 6). Then the assumptions of Lemma 8.2 are satisfied by some elements of the group.

Proof. In a small enough right neighbourhood of a there are no break points of f and g. Let ¢ be
a point in that neighbourhood. Clearly, a < ¢ < b. Without loss of generality, we can assume that
f(z) > z for x € (a,b), and idem for g (otherwise, we can replace them with their inverse). For some
keN, f75(b) < c. Denote ¢’ = f~*gf*. Consider the elements g’ and g~'¢’. As the stabiliser of a in
PSLy(Z) is cyclic (by Lemma 3.1.3), g ¢'(z) = z for z € (a, f*(c)). However, g~'¢'(z) = g~ (z)
for z € (f7*(b),b), and in particular g~'¢’(z) # = in that interval. Let ¢ be the largest fixed
point of g~'¢’ that is smaller than f~*(b). Consider now ¢’. It is the conjugate of g, therefore it is
different from the identity in (a, f~%(b)) and fixes f=%(b) < c. Clearly, ¢ < f~*(b). Then ¢',g~'¢
and ¢, f7%(b) satisfy the assumptions of Lemma 8.2. Observe that the same arguments can be used
for two elements with supports (a,b) and (a’,b) with a # a'. O

Consider the natural extension of the action of G on R U {+o0, —o0}, which is that every
element of (& fixes both —o0 and +00. We make the convention that +o0 is considered to be a break
point of f € G if and only if for every M € R there is z > M such that f(z) # = (and idem for —o0).
In other words, if the support of an element is equal to an interval (a,b), a and b are break points
even if one or both are infinite. We now prove that H is solvable by induction on the number of
different orbits of H on R U {+00} that contain non-trivial break points of elements of H. Remark
that the number of orbits of H that contain non-trivial break points of elements of H is the same
as the number of orbits that contain non-trivial break points of k1, ..., hg. In particular, it is finite.

Consider all maximal (for inclusion) intervals []1: over all couples (i,j). We denote them
I, Iy, ..., I,. By our hypothesis we have that they do not intersect each other. We denote hg = h;l1;
and H; = <hJ1.7 h%, ey hi} for every j < n. As the intervals I; do not intersect each other, H is a
subgroup of the Cartesian product of Hj:

H<]|]H 9)
j=1

Moreover, for every j, the amount of orbits with non-trivial break points of Hj is not greater
than that of H. Indeed, the orbits with break points of H; inside I; coincide with those of H, and
it has only two other orbits containing break points, which are the singletons containing the end
points of I;. We just need to prove that H has at least two other orbits containing non-trivial break
points. If I; = Iij,/, then the supremum and infimum of the support of h; are break points, and by
definition of I; their orbits by H do not intersect the interior of I;. The convention we chose assures
that our arguments are also correct if one or both of the end points is infinite. It is thus sufficient
to prove the induction step for H; for every j. Therefore without loss of generality we can assume
n = 1. Remark that in this case the end points of I; are both non-trivial break points, and both
clearly have trivial orbits.
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We denote (a,b) = I = I;. Consider the germs g; € St, of h; at a right neighbourhood of a.
As St, is cyclic, there exist m; € Z such that [ [, g/ generates a subgroup of St, that contains g
for all 4. Specifically, the image in Z of this product is the greatest common divisor of the images
in Z of g;. We denote h =[], h;"" and let, for every i, n; satisty ([, g;"*)™ = g;. For every i < k,
we consider h; = h;h ™.

Clearly, H = (h, B, b, ..., b, and there exists e such that for every ¢, supp(h]) < (a+e,b—¢)
(as the assumptions of Lemma 8.3 are not satisfied by h,h!). Consider the set of h='hih! for
i < k,l € Z and their supports. They are all elements of H. Furthermore, there is a power n such
that h"(a + €) > b —e. Therefore, for every point = € (a,b), the number of elements of that set
that contain z in their support is finite. Considering the intervals that define those supports, we
can therefore choose a maximal one (for the inclusion). Let x¢ be the lower bound of a maximal
interval. By our assumption, x¢ is then not contained in the support of any of those elements, and
neither is 2; = hl(zg) for I € Z. We denote B = hIRhI | (zg, x1). For i <k, let J; be the set of
j € Z such that h’g # Id. Then H is a subgroup of

h,UUh’g>:<h>z UUh/g>. (10)
i<k jeJ; i<k jeJ;

For a group F, Z F denotes the wreath product of Z on F. It is a group, the elements of
which are pairs (n, f) with n € Z and f € [[,., F with finite support. The group multiplication
is defined as (n, f)(n', f') = (n +n/,T" f + f'), where T" f(k) = f(k —n’). It is a well known
property of wreath products that if I is solvable, so is Z ! F. _

Denote H' = (U, Ujes, #'7)- The non-trivial break points and supports of h'] are contained
in (z0,21), and they fix that interval. Therefore the orbits that contain those break points are the
same in relation to (h, H") and to H'. On the other hand, (h, H") and H act the same way locally,
which means that they have the same orbits. Those two facts imply that H’ has at least two less
orbits containing non-trivial break points than H (as it does not have non-trivial break points in
the orbits of the end points of I). That group also does not contain elements that satisfy the
assumptions of Lemma 8.2. Indeed, assume that there are two words on J;_, U,cs, /'] and a,b € R
that satisfy those assumptions. Their supports are also contained in (z, 1), therefore so are a and
b. Then the same words in (J; e, hi are equal inside (a,b), and they satisfy the conditions of
Lemma 8.2. However, h} are elements of H and this is contradictory to our assumptions.

This provides the induction step. The induction basis is the trivial group, which is solvable.
Therefore H is solvable. O

We can now prove the main result, that is that for any subgroup H of H(Z) which is not
locally solvable and any measure p on H such that the support of p generates H as a semigroup
and has finite first break moment E[Br], the Poisson boundary of (H, i) is non-trivial.

Proof of Theorem 1.2. Fix H and take p on H with finite first break moment and the support of
which generates H as a semigroup. We distinguish two cases.

Assume first that there exist f,g € H and b, ¢, s € R that satisfy the assumptions of Lemma 7.3.
By the result of the lemma, the Poisson boundary of (H, p) is non-trivial.

We now assume that no such f,g,b, ¢, s exist and will prove that H is locally solvable. Any
finitely generated subgroup Hof H clearly also does not contain such f and g for any b,¢,s € R.
Furthermore, H(Z) is a subgroup of the piecewise PSLy(Z) group G (see Definition 2.1.2), and thus
Hisa subgroup of G. Therefore by Lemma 8.1 we obtain that His solvable, which proves that H
is locally solvable. O
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9 A remark on the case of finite 1 — ¢ moment

Remark that in the proof of Lemma 8.1, for a finitely generated subgroup that does not satisfy
the assumptions of Lemma 7.3 we obtained more than it being solvable. If the subgroup is also
non-abelian, we have proven that it contains a wreath product of Z with another subgroup (see
(10)). In particular, it is not virtually nilpotent, which implies (as it is finitely generated) that
there exists a measure on it with non-trivial boundary by a recent result of Frisch-Hartman-Tamuz-
Vahidi-Ferdowski [16]. Furthermore, it is known that on the wreath products ZZ it is possible to
obtain a measure with finite 1 — ¢ moment and non-trivial Poisson boundary for every € > 0 (see
Lemma 9.2 and discussion before and after it). The same arguments can be used in G:

Lemma 9.1. For every finitely generated subgroup H = (hy, ... hgy of G that is not abelian and
every € > 0 there exists a symmetric non-degenerate measure p on H with non-trivial Poisson
boundary such that §,, |g|' " du(g) < oo, where |g| is the word length of g.

We recall that every measure on an abelian group has trivial Poisson boundary (see Black-
well [7], Choquet-Deny [10]).

Proof. As there is always a non-degenerate symmetric measure with finite first moment, we can
assume that the assumptions of Lemma 7.3 are not satisfied in H. We will use the results on the
structure of H seen in the proof of Lemma 8.1. It is shown (see (9)) that H is a subgroup of a
Cartesian product H};l Hj. Specifically, there exist disjoint intervals Iy, I, ..., I, such that the

supports of elements of H are included in the union of those intervals. Taking hf = h;11; to be the
restriction on one of those intervals (as defined in Definition 2.1.3), the group Hj is then equal to
<h]1.7 hé, . ,hi}. For any j, consider the composition of the projection of ]_[?:1 Hj onto H; and the
inclusion of H in ]_[?:1 H;. Then Hj is the quotient of 1_[;-1:1 H; by the kernel of this composition,
which is equal to {h € ]_[;Lzl Hj, hig, =0}

We can therefore separately define measures on H; and on the kernel, and the Poisson bound-
ary of their sum would have the Poisson boundary of the measure on Hj as a quotient. In particular,
it suffices to show that for some j we can construct a measure on H; with non-trivial boundary
satisfying the conditions of the lemma. As H is non-abelian, so is at least one H;. Without loss of
generality, let that be Hp. In the proof of Lemma 8.1 we have shown (see (10)) that in H; there
are elements h' and hI; for j =1,2,...,k such that H; = (h', hlll,hllz, ey h1;> and is isomorphic
to a subgroup of the wreath product of h' on a group H’' defined by the rest of the elements.
Remark that H; not being abelian implies that H' is not trivial. Furthermore, by taking the group
morphism of Hj into Z{ H', we see that the image of k! is the generator (1,0) of the active group,
while for every j, the image of h1;~ is of the form (0, f;) where f; has finite support. The following
result is essentially due to Kaimanovich and Vershik [27, Proposition 6.1],[22, Theorem 1.3], and
has been studied in a more general context by Bartholdi and Erschler [6]:

Lemma 9.2. Consider the wreath product 7Z.) H' where H' is not trivial, and let u be a measure
on it such that the projection of u on Z gives a transient walk and the projection of p on H'T s
finitary and non-trivial. Then the Poisson boundary of u is not trivial.

In the article of Kaimanovich and Vershik, it is assumed that the measure is finitary, and
the acting group is Z* for k > 3, which assures transience. The proof remains unchanged with our
assumptions. Remark that those results have also been generalised in the case of a measure with
finite first moment that is transient on the active group, see Kaimanovich [24, Theorem 3.3],[25,
Theorem 3.6.6], Erschler [15, Lemma 1.1].
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Proof. Take a random walk (g, )neny on Z ! H' with law p. Let p be the projection of the wreath
product onto the factor isomorphic to H’ that has index 0 in H'”. By the assumptions of the
lemma, p(hy,) stabilises, and is not almost always the same. This provides a non-trivial quotient of
the Poisson boundary of p. O

All that is left is constructing a measure that verifies the assumptions of Lemma 9.2. Consider
a symmetric measure p; on (k) that has finite 1 — ¢ moment and is transient. Let us be defined
by being symmetric and by ug(hl;) = i for every j. Then p = %(Nl + p2) is a measure on Hy with
non-trivial Poisson boundary. O
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Abstract

We consider a transitive action of a finitely generated group G and the Schreier graph
I' defined by this action for some fixed generating set. For a probability measure @
on G with a finite first moment, we show that if the induced random walk is transient,
it converges towards the space of ends of I". As a corollary, we obtain that for a
probability measure with a finite first moment on Thompson’s group F, the support of
which generates F as a semigroup, the induced random walk on the dyadic numbers
has a non-trivial Poisson boundary. Some assumption on the moment of the measure
is necessary as follows from an example by Juschenko and Zheng.

Keywords Random walks on groups - Poisson boundary - Schreier graph -
Thompson’s group F
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1 Introduction

Consider a finitely generated group G acting on a space X (on the right). For a point
x € X and a generating set S, the Schreier graph I = (xG, E) is the graph the vertex
set of which s the orbit x G of x, and the edges E are the couples of the form (y, y.s) for
y € xG and s € S. Throughout this article, we will assume the action to be transitive,
that is for every x, xG = X. We take a measure ; on G and will study for which
(G, I', ) the induced random walk on I” converges towards an end of the graph.
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We recall the definition of the end space. Consider an exhaustive increasing sequence
K; C Ky C ... of finite subsets of X. An end of I" is a sequence Uy 2 Uy 2 ...
where U, is an infinite connected component of the subgraph obtained by deleting
the vertices in K, and adjacent edges. For more details, see Definition 2.1. Our main
result states:

Theorem 1.1 Consider a finitely generated group G acting transitively on a space X.
Fix a generating set S and let I' = (X, E) be the associated Schreier graph. Let ju be
a measure on G with a finite first moment such that the induced random walk on I' is
transient. Then, the random walk almost surely converges towards a (random) end of
the graph.

Notice that for measures with finite support, the result is straightforward. The result
is also already known in the case where the action of G on X is non-amenable (this
is a particular case of [20, Theorem 21.16], which we recall as Theorem 2.5), under
the condition of a finite first moment. An action is non-amenable when there is no
G-invariant mean on X. Kesten’s criterion [11] states that for any symmetric non-
degenerate measure on the group, the action is non-amenable if and only if the induced
random walk on X has probability of return to the origin that decreases exponentially
(see Bartholdi [2] for a survey on the amenability of group actions). The general case
of the cited [20, Theorem 21.16] does not assume that the random walk is induced
by a measure on a group. The result is no longer true if we assume neither that the
walk is induced by a measure on a group nor that the probability of return to the
origin decreases exponentially. We prove that in Proposition 2.6, where we construct
a Markov chain (X, P) that is transient, uniformly irreducible and has a uniform first
moment, but does not converge towards an end of I".

If the action is non-amenable, the random walk induced by any non-degenerate
measure is transient (see [20, Lemma 1.9]). In the general case, transience can some-
times be obtained from the graph geometry using a comparison Lemma 2.2 due to
Baldi—Lohoué—Peyriére [1]. Combining this lemma and the theorem, we obtain:

Corollary 1.2 Consider a finitely generated group G acting transitively on a space X.
Fix a generating set S and let I' = (X, E) be the associated Schreier graph. Assume
that I" is a transient graph. Then, for all measures @ on G with finite first moments
such that supp() generates G as a semigroup, the induced random walk almost surely
converges towards an end of the graph.

‘We will also explain how this result can be applied to Thompson’s group F. Let us
recall the definition of this group. The set of dyadic rationals Z[%] is the set of numbers
of the form a2 with a,b € Z. Thompson’s group F is the group of orientation-
preserving piecewise linear self-isomorphisms of the closed unit interval with dyadic
slopes, with a finite number of break points, all break points being in Z[%]. Itisa
finitely generated group with a canonical generating set (with two elements). See
Cannon-Floyd—Parry [3] or Meier’s book [13, Ch. 10] for details and properties.
Its amenability is a celebrated open question. It is well known that amenability is
equivalent to the existence of a non-degenerate measure with trivial Poisson boundary
(see Kaimanovich—Vershik [10], Rosenblatt [16]). The boundary of a random walk
induced by an action is a quotient of the boundary of the walk on the group.
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The Schreier graph on Z[%] (of a conjugate action of F') has been described by
Savchuk [17, Proposition 1]. It is a tree that can be understood as a combination of
a skeleton quasi-isometric to a binary tree, and rays attached at each point of the
skeleton (see Fig. 2). Understanding the geometry of the graph directly shows that it
is transient. Kaimanovich [9, Theorem 14] also proves this result without using the
geometry of the graph. Hence, by Corollary 1.2 and Lemma 4.2 we obtain

Corollary 1.3 Consider a measure on Thompson's group F with a finite first moment,
the support of which generates F as a semigroup. Then, the induced random walk on
Z[%] has non-trivial Poisson boundary.

This extends the following previous results. Kaimanovich [9] and Mishchenko [14]
prove that the simple random walk on the Schreier graph given by that action has non-
trivial boundary. Kaimanovich [9, Section 6.A] further shows that it is non-trivial for
walks induced by measures with supports that are finite and generate F' as a semigroup.
We have also shown [19] that for any measure with a finite first moment on F, the
support of which generates F as a semigroup, the walk on the group has non-trivial
Poisson boundary.

The result of the corollary is false without assuming a finite first moment. Juschenko
and Zheng [7] have proven that there exists a symmetric non-degenerate measure on
F such that the induced random walk has trivial Poisson boundary. If the trajectories
almost surely converge towards points on the end space, the end space endowed the
exit measure on it is a quotient of the Poisson boundary. However, the self-similarity
of the graph implies that the exit measure cannot be trivial, as we prove in Lemma 4.2.
Combining the result of Juschenko—Zheng with this lemma, we obtain:

Corollary 1.4 There exists a finitely generated group G, a space X and a symmetric
non-degenerate measure on G such that

— G acts amenably and transitively on X,

— the induced random walk on the Schreier graph is transient,

— the induced random walk on the Schreier graph does not converge towards an end
of the graph.

In particular, the measure described by Juschenko and Zheng [7, Theorem 3] provides
an example for the action of Thompson’s group F on Z[%].

Concerning Thompson’s group F, studying the Poisson boundary of random walks
on it has been highlighted as a possible approach to proving non-amenability in the
work of Kaimanovich. The results by him and Mischenko further suggested that one
could consider the boundary of induced random walks Z[%], but that was shown
impossible by the result of Juschenko—Zheng. In more recent results, Juschenko [6]
studied walks on the space of n-element subsets of Z[%] and gave a combinatorial
necessary and sufficient condition for the Poisson boundary of induced walks on that
space to be non-trivial for all non-degenerate measures. In that situation, the existence
of a measure with trivial boundary is due to Juschenko for n = 2 and to Schneider
and Thom [18] for a general n.
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2 Preliminaries

Consider a finitely generated group G acting transitively on a space X and a measure ;
on G. The random walk on G is defined by multiplication on the right. That is, the walk
with trajectories (g, ) forn € Nwhere g,4+1 = g,h, and the increments /,, are sampled
by s In other words, the random walk is defined by the kernel (g, h) — (g~ 'h).
The trajectory of the induced random walk on X starting at a point o is the image of
the trajectory of the walk on the group by the map:

(gn) > (0.gn)-

Its kernel is P(x,y) = Zx_g:y n(g). We now fix a generating set S of G
and consider the undirected graph I" = (X, E) with vertices X and edges E =
{(x, x.s) fors € S, x € X}. We recall that this is called the Schreier graph, and that
it is connected as we assumed the action to be transitive. It is worth noting that the
directed version of the same definition is also referred to as the Schreier graph, and
that in the figures in this article, the edges will have an assigned direction for easier
visualisation. It is known that every connected regular graph of even degree is iso-
morphic to a Schreier graph. It was first proven by Gross [5] for finite graphs. For a
detailed proof of the infinite case, see [12, Theorem 3.2.5].

Definition 2.1 For a compact K C X denote by 7o(X \ K) the set of connected
components of X \ K. There is a natural partial order defined by K| < K> if and only if
K| € K. Thatorder givesrise to a natural morphism 7 2 : 7o(X\ K2) — 7o(X\ K1)
which sends a connected component into the connected component of which it is a
subset. This forms an inverse system indexed by K C X (see [15, Section 3.1.2]). The
end space is then the inverse limit

lim 70X\ K)={(xk) € [] moX\K)lmiox2 =x1, Ki C Ka).

KcXx KcX
compact compact

In our case, the end space can be described using an increasing exhaustive sequence
of finite sets K, as such sequences are cofinal in the set of all compact subsets. That
is, any compact set is included in K, for n large enough.

‘We use the following comparison lemma by Baldi-Lohoué—Peyriere [1].

Lemma 2.2 (Comparison lemma) Let Py (x, y) and P>(x, y) be doubly stochastic ker-
nels on a countable set X and assume that P, is symmetric. Assume that there exists
& > 0 such that

Pi(x,y) = ePa(x,y)
forany x,y. Then, if P, is transient, then so is Py.

Here, doubly stochastic kernels means that the operators are reversible and the
inverse of each is also Markov. Equivalently, they preserve the counting measure;
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Fig. 1 A recurrent graph with infinitely many ends

it is worth noting that the result holds true more generally for operators with any
common stationary measure, see Kaimanovich [9, Section 3.C]; see also Woess [20,
Section 2.C,3.A]. For the walks considered in this article, it is direct to verify that
for all probability measures, p(x, y) = wx~ly)is doubly stochastic (as the inverse
operator is defined by (x, y) — u(y"x)).

We recall that a random walk is called transient if, for any point, almost every
trajectory leaves that point after finite time. Otherwise, the walk is called recurrent and
there is a point that the walk almost surely visits an infinite amount of times. A graph
is called transient (recurrent) if the simple random walk on it is transient (recurrent).
The Green function G is defined by G- (x, y) = Y, o p™ (x, y)z" where p®™ is the
n-time transition probability of p. In other words, p“ (x, y) is the probability that a
random walk starting in x is at y after n steps. We will write G(x, y) = G1(x, y). A
walk is transient if and only if G(x, x) < oo for all x € X.

Remark that recurrent walks do not converge to the end space. However, itis possible
for a measure on a group to induce a transient walk even if the uniform measure is
recurrent, in which case we can apply Theorem 1.1. Here, we give an example of that
situation in which the graph has infinitely many ends.

Example 2.3 Consider the graph ¥ in Fig. 1. Consider the action of the free group
on two generators /> on it where the first generator a sends each vertex to the right,
and the second generator b sends a vertex to the vertex above if possible, and to itself
otherwise. The graph is recurrent. Consider the measure u(a) = %, wa = %,
wb) = pnb™hH = %. It is transient and converges towards the ends defined by the
right-hand side rays.

If we do not require the measure on F> to have a finite first moment, it can be
chosen symmetric, while the induced walk remains transient. This can be done on any
graph containing an infinite array, see [4, Lemma 7.1]. Furthermore, we can construct
recurrent graphs for which it is possible to have symmetric measures (on the acting
group) with finite first moments that induce transient walks:

Example 2.4 Consider the graph ¥’ obtained by ¥ by replacing the horizontal lines
with Z? planes. It is a recurrent graph. Consider the free product Z s Z?> with generators
a € 7 and b, ¢ € Z*. Consider its action on ¥’ where a moves a vertex to the vertex
above if possible, and to itself otherwise, and b and ¢ act horizontally. There is a
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symmetric transient measure /& on 72 with a finite first moment. Consider ;/ =
%(Sa +8,-1) + %u. It induces a transient walk on ¥’, which by Theorem 1.1 almost
surely converges to an element of end space.

Let us recall the exact statement of Theorem 21.16 from the book of Woess [20].
For a graph I" = (X, E) and a Markov operator P on X, the theorem states:

Theorem 2.5 ([20, Theorem 21.16]) If (X, P) is uniformly irreducible and has a uni-
form first moment, and p(P) < 1, then the random walk defined by (X, P) converges
almost surely to a random end of T".

Let us define the concepts in the statement. The walk is uniformly irreducible if there
exists ¢ > 0 and finite K € N such that for all neighbouring vertices x and y, there
existsk < K suchthat p® (x, y) > c. The step distribution on apoint x € X is defined
asoy(n) = Zy: d(x,y)=n p(x, y). The step distributions are tight if there is a distribution
o on Ny, such that for all x and all n, the tails o ([1, 4+-00)) are bounded by the tails of
o . The walk has uniform first moment if the step distributions are tight with some o that
has finite first moment. The spectral radius is o (P) = lim sup,,_, o, p™ (x, y)'/" (This
quantity does not depend on x and y.) It is straightforward to check that if p(P) < 1,
then the random walk is transient. Moreover, applying the definition for x = y we
see that p(P) < 1 if any only if the probability of return to the origin decreases
exponentially. We will show that the result of Theorem 2.5 is not true without the
assumption p(P) < 1. By sgn we denote the sign function on Z: sgn(z) = 1 if x > 0
and sgn(x) = —1ifx <O.

Proposition 2.6 1. Thereisagraph I’ = (X, E) and a Markov operator P on X such
that (X, P) is transient, uniformly irreducible and has a uniform first moment, but
the random walk defined by (X, P) does not converge almost surely to a random
end of T.

2. Consider the Markov chain (Z, P
as

) which, given p, > 0 and e, > 0, is defined

ns€n

(1= p) 2 fory =sgn(x) (x| + 1)
P,y = | =PI fory=sgn@(ix| = 1)

Dn Jory=—x

0 otherwise.

There is a choice of p, > 0and e, > 0 such that (Z, Py, ¢,) is transient, uniformly
irreducible, has uniform first moment and has an infinite expected number of steps
where the sign changes. In particular, it verifies the conditions of (1).

The exact values that appear in the proof are p, and &, =

(n+1)(In(n+1)%—n(Inn)?
(n+D)(In(m+1))24n(nn)?"

nZ(Inn)?

Proof We will find sufficient conditions on p, > Oand ¢, > Ounder which (Z, P, ¢,)
verifies the conditions we seek, and then provide a choice that satisfies those conditions.
Specifically, the sufficient conditions are (1), (2), (3) and (4).

The tails o ([n, +00)) are bounded by the tail of the distribution o on Ny defined
byo(0) =0(l) =1,02n) = p, forn > 1 and o (x) = 0 otherwise. The Markov
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chain (Z, P, ) has uniform first moment if and only if o has finite first moment, or

nEn
equivalently
Z np, < 0o. (1)
neN
For (Z, Py, ¢,) to be uniformly irreducible, it would suffice that there should exist
¢ > 0 such that (1 — p,) '_2‘9" > ¢ for all n. If we have
=2 0and e, 2250 )

then (1 — py) 1_26” L % In that case, replacing if necessary the values a finite

number of p, and/or &, with 0, we can have (1 — p,,)% >c.

To study the transience of (Z, Py, ,), we consider P on Ny defined by P (k, k +
D= —p)E, Plhk,k—1) = (1 — py) 5= and Pk, k) = py. It is a nearest
neighbour random walk on Ny, and its transience is equivalent to the transience of
(Z, Pp,.e,). Nearest neighbour random walks on Ny are well understood. As seen in
[20, Section 2.16], (N, 13) is transient if and only if

o0
> rle) < o0 (3)
k=1

where r(ex) = W. We have ri’;‘e:’)') = }:i and therefore defining &y

is equivalent to defining r (ex). 5

Finally, if the Green function of P is G (P) then the expected number of “jumps”
between n and —n is G (n, n)p,. We wish to obtain )", G(P>(n,n)p,, = o0.
From the results of [20, Exarn[ge 2.13, Section 2.16], it follows that G(P)(n, n) =
m Y tensi F(e). If P(n,n — 1) > ¢, it would suffice to have

1 0
Pn——— r(ex) = 00. 4)
neZN r(en) k=¥+1

‘We now define r(e) and pi and claim that those choices verify conditions (1), (2),
(3) and (4). Let

1

dpr= —.
PE= 2 n k)2

1
r(ey) = 7]((1“ 3E an

We first prove condition (1). It suffices to observe that

Sone [" ot w1 T
P = 1 x2(nx)2 T x|’

n>2
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which is finite. As r(ex) = kpy, this also proves condition (3). Condition (2) is
straightforward.
‘We now only need to prove condition (4). Similarly, we have

00 o 1 X
PR L st =
and thus
1 > n(Inn)?
D k:;rlr(ek) > ﬁ ~nlnn.
Then,
1 & 1 | i

%pn@k:% r(e) = %m > ]2 Tzt = InnG)|
which is not finite. O
3 Proof of Main Theorem 1.1
Consider a finite set K C X and denote I7, ..., I'x the connected components of its

complement. We will study the probability to change the component at step n and
prove that the sum over 7 is finite.

Consider x € X \ K and g € G. We will study the probability that x.g is
not in the same component. Let g = s152...5, where |[g] = n and 5; € S.
If x and x.g are in different components, by definition the path x, x.s1,...,x.g
passes through K. Therefore, there is i such that x.s1s2...s; € K. Equivalently,
(D i<n TsisoosiOxs 2 kex 8k) = 1 where 8y is the characteristic function at a given
point y and T + is the translation defined by 778y = §,. 7. We observe

(D Tosrn B Y000 = (B D D T 18

i<n kek i<n kek

‘We denote

f= Z H(S]SZ"'S”)ZZTS,’]...SZ’ISI’IS"'

5182...5,€G i<n kekK
Then, the probability that x and x.g are in different components is not greater than
(8. f). Furthermore, the /' norm of f satisfies || f|; < |K||lu|l1 where |||l is the

first moment of w. In particular, it is finite.
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Take a random walk starting at a fixed point o and consider n large enough so that
the transient walk has left K. The probability of changing component at step n + 1 is
then not greater than

(P80, f).
We have
D op e, =2 p" ) f(x) =) f(x)G(o,x)
neN neNxeX xeX

where we will have the right to interchange the order of summation if we prove
that the right-hand side is finite. Let p be the kernel induced by the inverse measure
g u(gh, and GP) the Green function corresponding to that kernel. Then,
G(o,x) = G®P (x, 0).Itis aknown property of the Green function that forallx, y € X,
we have G (x, y) < GP)(y, y). This follows from the fact that the left-hand side is
the expected number of visits of y of a walk starting at x, while the right-hand side is
the expected number of visits starting at y. Thus,

Y f0)G(,x) <GP (0,0 fll < oo

xeX

This proves that after finite time, the walk almost surely stays in the same con-
nected component of the complement of K. Applying this for an increasing exhaustive
sequence of K, we obtain the result of Theorem 1.1.

It is worth mentioning that this approach is similar to the one used by
Kaimanovich [8, Theorem 3.3] to prove pointwise convergence of the configuration
of walks on lamplighter groups with a finite first moment.

4 Thompson'’s Group F

‘We now apply Theorem 1.1 to Thompson’s group F. The Schreier graph on the dyadic
numbers has been described by Savchuk [17, Proposition 1](see Fig. 2). We have the
following self-similarity result:

Lemma 4.1 Consider the Schreier graphs of F for its action on Z[%] (see Fig. 2). We
denote left (respectively right) branch the subgraph of the vertices v for which any
geodesic between v and % passes through }% (respectively, 1% ). On the figure, those
are the left and right branches of the tree, along with the rays starting at them. Then,

each branch can be embedded as a labelled graph into the other.

Remark that stronger results of self-similarity of this graph have already been
observed, see, for example, [9, Section 5.F].

Proof Each branch is a labelled tree, and thus, an equivariant embedding is uniquely

defined by the image of the root. We choose the image of % to be % This defines an
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Fig.2 Schreier graph of the dyadic action of F for the standard generators

embedding of the left branch into the right one. Similarly, choosing % as the image
of 197) defines an embedding of the right branch into the left one. O

This implies:

Lemma4.2 Fix a measure on F, the support of which generates F as a semi-group
such that the induced random walk on the dyadic numbers almost surely converges
towards an end of the graph. Then, the exit measure on the end space is not trivial.

Proof We decompose the end space into five sets: two sets containing, respectively, the
ends of the left or the right branch, and three sets that are the singletons corresponding
to the rays at % and % The rays have equivariant embeddings into the branches.
Combining with Lemma 4.1, this means that any of those five sets can be equivariantely
embedded into another one. In particular, if the restriction of the exist measure on one
of them has nonzero mass, then by transitivity the restriction on the embedding also
has nonzero mass. m]
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FOLNER FUNCTIONS AND SETS ON WREATH PRODUCTS AND
BAUMSLAG-SOLITAR GROUPS

BOGDAN STANKOV

AsstracT. We calculate the exact values of the Fglner function of the lamplighter group for the standard
and the switch-walk-switch generating sets. Fglner functions encode the isoperimetric properties of amenable
groups and have previously been studied up to asymptotic equivalence (that is to say, independently of
the choice of finite generating set). We also obtain a lower bound for the Fglner function for a class of
permutational wreath products (with certain generating sets). We use that bound to construct an example
of a group, the Fglner function of which has the same exponent as its growth function. What is more, we
prove an isoperimetric result concerning the edge boundary on the Baumslag-Solitar group BS(1,2) with
the standard generating set.

Folner function, Fglner sets, lamplighter group, wreath products, permutational wreath products,
Baumslag-Solitar groups, Coulhon and Saloff-Coste inequality, growth function

1. INTRODUCTION

One equivalent characterisation of the amenability of an infinite group G, called the Falner condition,
is that the isoperimetric constant (also known as Cheeger constant) of its Cayley graph should be 0. That

constant is defined as the infimum of ||6If“ over all finite sets F < G with |F| < 1|G|. As the quotient

cannot reach 0, amenability is therefore characterised by the existence of a sequence of sets F,, such that
‘fi "I‘ converges towards 0, also known as a Fglner sequence. One natural direction for studying the possible
Folner sequences on a given group is to ask how small the sets can be. We consider the Fglner function (see
(3) for the definition of 0;,,):

Definition 1.1. The Fginer function Fol (or Folg; or Folg g) of a group G with a given finite generating
set .S is defined on N by

x

Fol(n) = mm{|F| :FcgG, ] < n}

Remark that Fgl(1) = 1. Most research seeks to classify it up to asymptotic equivalence. Two
functions are asymptotically equivalent if there are constants A and B such that f(xz/A)/B < g(X) <
f(zA)B. The Fglner function of a group clearly depends on the choice of a generating set, but the functions
arising from different generating sets (and more generally, functions arising from quasi-isometric spaces) are
asymptotically equivalent.

The classical isoperimetric theorem states that among domains of given volume in R"™, the minimal
surface area is obtained on a ball (see survey by Osserman [18, Section 2]). As Z" is quasi-isometric to
R™, this is also a first isoperimetric result for discrete groups. The fact that if a minimum exists, it is
realised only on the ball is obtained (in R?) by Steiner in the XIX'" century, using what is now called
Steiner symmetrization (see Hehl [14], Hopf [15], Froehlich [8]). The existence of a minimum is obtained, in
R3, by Schwarz [28]. Varopoulos [31] shows more generally an isoperimetric inequality for direct products.
Pansu [20] (see also [19]) obtains one for the Heisenberg group Hj. One central result is the Coulhon and
Saloff-Coste inequality [5]:

Theorem 1.2 (Coulhon and Saloff-Coste inequality). Consider an infinite group G generated by a finite set
S and let $(\) = min(n|V(n) > X). Then for all finite sets I’

|0in F| 1
[F]~ 8[Slo(2IF])’

Date: 20 June, 2021.
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The multiplicative constants can be improved (see Gébor Pete |22, Theorem 5.11], Bruno Luiz Santos
Correia [27]):

[0in F| 1
=

W F 7 26@F)

The result of Santos Correia is also announced for finite groups for |F| < 2|G|. The Coulhon and
Saloff-Coste inequality (Theorem 1.2) implies in particular that for a group with exponential growth, the
Fglner function must also grow at least exponentially. Similarly, it is known that the Fglner functions of
groups with polynomial growth are polynomial (see for example |34, Section 1.4.C]). Another inequality
on group isoperimetry is given by Zuk [35]. Vershik [32] asks if Fglner function can be super-exponential,
initiating the study of Fglner functions. He suggests studying the wreath product Z!Z as a possible example.
Pittet [23] shows that the Fglner functions of polycyclic groups are at most exponential (and are therefore
exponential for polycyclic groups with exponential growth). This is true more generally for solvable groups
of finite Priifer rank, see [25] and [16]. The first example of a group with super-exponential Fglner function
is obtained by Pittet and Saloff-Coste [24] for Z%1Z/2Z. Later the Folner functions of wreath products with
certain regularity conditions are described by Erschler [6] up to asymptotic equivalence. Specifically, say
that a function f verifies property () if for all C' > 0 there is k£ > 0 such that f(kn) > Cf(n). The result of
[6] than states that if the Fglner functions of two groups A and B both verify property (*), then the Fglner
function of A1 B is Folyp(n) = Folg(n)Fola(m,

Other examples with know Fglner functions have been presented by Gromov [12, Section 8.2,Re-
mark (b)] for all functions with sufficiently fast growing derivatives. Saloff-Coste and Zheng [26] provide
upper and lower bounds for it on, among others, "bubble" groups and cyclic Neumann-Segal groups, and
those two bounds are asymptotically equivalent under certain conditions. Recently, Brieussel and Zheng [3]
show that for any non-decreasing f with f(1) = 1 and z/f(z) non-decreasing, there is a group whose Fglner
function is asymptotically equivalent to the exponent of the inverse function of /f (). Erschler and Zheng [7]
obtain examples for a class of super-exponential functions under exp(n?) with weaker regularity conditions.
Specifically, for any d and any non-decreasing 7 such that 7(n) < n¢, there is a group G and a constant C
such that

(2) Cnexp(n + 7(n)) = Folg(n) > cxp(é(n +7(n/C))).

The left-hand side of this inequality is always asymptotically equivalent to exp(n+7(n)), and it suffices
therefore that the right-hand side be asymptotically equivalent to that function to have a description of the
Folner function of G. Notice in particular that if 7 verifies condition (x), this is verified. Remark that the
conditions we mentioned only consider functions at least as large as exp(n); it is an open question whether a
Folner function can have intermediate growth (see Grigorchuk [10, Conjecture 5(ii)]). By a result of Erschler,
a negative answer would imply the Growth Gap Conjecture [10, Conjecture 2|, which conjectures that the
volume growth function must be either polynomial or at least as fast as exp(y/n). Those conjectures also
have weak versions, which are equivalent to each other (see discussion after Conjecture 6 in [10]).

1.1. Formulation of results. In this paper, we obtain the exact values of the Fglner function for two
classical generating sets on the lamplighter group ZZ (see Definition 2.2) where by Zo we denote Z/27.
The standard Fglner sets F,, on that group are defined as F,, = {(k, f)|k € [1,n],supp(f) < [1,n]]}. The
two generating sets we consider are the standard set S = {¢,d} (see (4)) and the switch-walk-switch set
S’ = {t, 0,10, dt, 6td}.

We will provide a lower bound for the outer boundary of a class of permutational wreath products in
Theorem 4.1. It applies in particular to Z Zy, and we will obtain that the standard sets are optimal (see
Definition 3.1) for the outer and edge boundaries for the standard generating set. We then show that by
Lemma 3.2, F,, | out F, is optimal for the inner boundary, and obtain the Fglner functions :

Theorem 1.3. Consider the lamplighter group Z 1 Zs.
(1) For any n€ N and any F < ZZs such that |F| < |F,|, we have
‘aF‘ > IaoutF‘ > |aoutFn‘ _ |(’/3Fn|

[F| = |F| 7 |F IR
2
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and if |F| < |F,|, the inequalities are strict,
(2) From point (1) it follows that for any n € N and any F < Z 1 Zy such that
(a) (For the standard generating set) |F| < |F, | GoutFn|, we have % > %J#ﬂ)‘, and
if |F| < |Fp\J GoutFnl, the inequality is strict,

(b) (For S') |F| < |F,,Jd,u.Fn|, we have Pl > ‘ailn;fbgfﬁﬂ")‘ (notice that F,| )0, Fn =

[F]
t7 F,42), and if |F| < |F, U 0y Ful, the inequality is strict,
(3) From point (2) it follows that, for n = 2, the Folner functions of the lamplighter group for the
standard generating set is
Fol(n) = 2n2%("~1
and for the switch-walk-switch set it is
Folgyps(n) = 20227,

We also obtain that for the standard generators, the sets giving equality are unique up to translation.
We then substitute those values in the Coulhon and Saloff-Coste inequality in order to study the
multiplicative constants. The inequality 1 implies (for all groups and all generating sets) that

2Fol(n) > V(g —1).

For groups with exponential growth, it is easy to see that the multiplicative constant in front of n
holds more importance than the other constants. Indeed, if we were to prove that AFgl(n) > V(n(}+¢)—B)
for any €, A, B > 0, that would be a strictly stronger result for large n. One may then ask:

Question 1.4. For a group G and a generating set S, denote by Cg, s the supremum of the set of constants
C' such that there exist A, B such that AFgl(n) = V(Cn — B). What is the infimum Cj of the set of Cq g
over all finitely generated groups and all finite generating sets?

The original inequality obtains a positive result for C' = ﬁ (and thus Cy = ﬁ), while the results
of [22, Theorem 5.11] and [27] that we cited as Equation 1 show that Co > 4. We will go in detail on this

lim inf nFol(n)
Tim BV(u -

constant in the preliminary Section 2, where we will show in Proposition 2.4 that Cg g =
Proposition 1.5. The lamplighter group verifies

lim 2Fel(n) In4
Coitas = it = ~ 2,88
lim "T(") In($(1 + v/5))

for the standard generating set, and

lim InFolgy,s(n)
Cuz,,s0 = m =2
n

This provides an upper bound of 2 for Cj. Remark that the bound was already known before proving
that the standard sets are optimal; what Theorem 1.3 gives is that this example cannot improve it. In
Example 2.6 we will see that the upper bound can be lowered to Cy < 1.

Another direction that can be considered once one has exact evaluations of Fglner functions is studying
the power series ), Fgl(n)z™. The equivalent series have been studied for volume growth (see Grigorchuk-de
la Harpe [11, Section (4)]). One central question that a lot of authors have considered is the rationality of
those series as a function. For the two examples shown here, the power series of the Fglner function are
rational functions: they are respectively (412%1? et (418%1)2.

We also obtain results for the Baumslag-Solitar group BS(1,2) (see Definition 2.3), however only in
respect to the edge boundary. Taking the notation from the definition, its standard sets are defined the same
way as in the lamplighter group.

Theorem 1.6. Consider the Baumslag-Solitar group BS(1,2) with the standard generating set. Then for
any n € N and any F < ZZs such that |F| < |F,|, we have |0F| > |0F,| (where F,, are the standard sets),
and if |F| < |F,|, the inequality is strict.
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This result is not always true for B(1,p) for larger p, and we will provide a counter example for p = 8
and the standard set with 8 elements. However this counter example comes from p being significant when
compared to the length of the interval defining the standard set, and it is possible that for B(1,p) as well,
standard sets are optimal above a certain size.

We present more detailed definitions and construct Example 2.6 in the next section. In Section 3,
we present associated graphs, which are the main tool of the proof, and prove some general results. In
particular, we show Lemma 3.2, which will be used to obtain that part (2)a of Theorem 1.3 follows from
part (1). In Section 4, we announce and prove Theorem 4.1 and show that the main Theorem 1.3 follows
from it. In Section 5, we prove Proposition 1.5. Finally, in Section 6, we study Baumslag-Solitar groups.

2. PRELIMINARIES AND EXAMPLES

The concept of amenability finds its origins in a 1924 result by Banach and Tarski [1], where they
decompose a solid ball in R? into five pieces, and reassemble them into two balls using rotations. That is now
called the Banach-Tarski paradox. The proof makes use of the fact that the group of rotations of R? admits
a free subgroup. Von Neumann [17] considers it as a group property and introduces the concept of amenable
groups. Tarski [29] later proves amenability to be the only obstruction to the existence of "paradoxical"
decompositions (like the one in Banach-Tarski’s article) of the action of the group on itself by multiplication,
as well as any free actions of the group. One way to prove the result of Banach-Tarski is to see it as an
almost everywhere free action of SO3(R) and correct for the countable set where it is not (see Wagon [33,
Cor. 3.10]). For more information and properties of amenability, see books by Greenleaf [9] and Wagon [33],
or an article by Ceccherini-Silberstein-Grigorchuk-la Harpe [4], or a recent survey by Bartholdi [2].

Definition 2.1 (Fglner criterion). A group G is amenable if and only if for every finite set S < G and every
€ > 0 there exists a set F' such that

|FAS.F| < e|F|.

If G is finitely generated, it suffices to consider a single generating set S instead of all finite sets. We
can also apply Definition 2.1 for S| J S~ J{Id}. Then |FA(S|J S~ U{Id}).F]| is the set of vertices in the
Cayley graph of G that are at a distance exactly 1 from F. We denote that the outer boundary 0y, F'. Then
‘a%‘llm < ¢, or in other words that the infimum of those quotients should

[Fn

the condition can be written as
be 0. Similarly, let
(3) 0inF:{geF:HSESUS71:gs¢F}.
Finally, we consider 0F to be the set of edges between F' and its complement. Remark that while those
values can differ, whether the infimum of % is 0 or not does not depend on which boundary we consider.
For groups of subexponential growth, for every ¢, there is some n such that the ball around the identity
of radius n is a corresponding Fglner set. Note that to obtain a Fglner sequence from this, one needs to
consider a subsequence of the sequence of balls of radius n. It is an open question whether in every group of
subexponential growth, all balls form a Fglner sequence. For groups of exponential growth, it is generally
not sufficient to consider balls, and it is an open question whether there exists any group of exponential
growth where some subsequence of balls forms a Fglner sequence (one place where the question is mentioned
is by Tessera 30, Question 15]).
For two groups A and B, denote B(Y) the set of functions from A onto B such that all but a finite
number of values are I'dg.

Definition 2.2. The (restricted) wreath product A B is the semi-direct product of A and B where A
acts on B() by translation.

We can write the elements as (a, f) with a € A and f € B, The group law is then (a, f)(d/, f') =
(ad/,x > f(2)f'(wa™D).

Given generating sets S and S’ on A and B respectively, we can define a standard generating set
of A B. It consists of the elements of the form (s,Ig) for s € S (where Iy = Idp for all x € A), as well
as (IdA,éf:iA) for ' € S" where 5§;A(Id,4) = s and éfIdA(a:) = Idp for all other z. One can verify that
multiplying an element (a, f) on the right with the first type of generating element, one obtains (as, f), and
with the second type, the value of f at the point a is changed by s'.

4
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Similarly, given Fglner sets F)4 and Fp on A and B respectively, one obtains standard Fglner sets on
Al B:
F = {(a, f)la € Fa,supp(f) < Fa,Vz : f(z) € Fp}.
Their outer boundary is
Oout F' = {(a, f)|a € doutFa,supp(f) = Fa,Vz : f(2) € Fp} U {a € Fa,supp(f) = Fa, f(a) € ou Fp}.
As |F| = |Fal|Fp|F4l and |0out F| = |Gout Fa||Fp|!F4! + |Fa||F|F41=1|00us Fi|, we have
‘6outF‘ _ IaoutFAl ‘aoutFB‘
|F] |Fal |F5l

We will focus on the lamplighter group Z1Zs. As both of those groups have standard generating sets,
this gives us a standard generating set on the lamplighter group:

(4) S = {t,8} where t = (1,0) and § = (0,43).
The Baumslag-Solitar groups are defined as follows:

Definition 2.3. The Baumslag-Solitar group B.S(m,n) is the two-generator group given by the presentation
{a,b:ba™b! = a™).

The standard generating set is {a, b}.

We will focus on the groups BS(1,p). That group is isomorphic to the group generated by = +— pz
and x + = + 1 (by mapping b~! and a to them respectively). In that group, any element can be written
asp'z+ f withneZand fe Z[%] Its generators act respectively by changing n or by adding p™ to f.
Similarly to the lampligher group, we will write the elements as (n, f). The standard Fglner sets are then
expressed in the same way as for wreath products. In other words:

E,={p"z+ flke[l,n],feZ0< f <p"ti}.

With regards to the constant mentioned in Question 1.4, it is not hard to see that if the limits
lim % and lim w exist for a given group and generating set, the supremum Cg s in that case would
be their quotient (a proof will be given in Proposition 2.4). The second limit always exists. Indeed, as
any element of length at most mn can be written as a product of two elements of length at most m and n
respectively, we have

V(m+n) <V(m)V(n),

and thus In V(n) is sub-additive. The limit then exists by Fekete’s Subadditive Lemma. However, the other
limit lim % doesn’t always exist. The trivial example would be groups with super-exponential Fglner
functions, where it diverges towards +c0. However, even choosing the convention that we will consider that
as a converging sequence, the limit still doesn’t always exist. We can see that in examples by Erschler
and Zheng where the Fglner function oscillates between expn and expn®. In that case InFol(n) oocillates
between a finite constant and plus infinity. Specifically, consider [7, Example 3.8(2)] for a = 1 and § = 2.
Take a sequence (7;) and a function 7(n) = n® for n € [n9;—1,72;] and 7(n) = n? for n € [n2;,Mm2541]- The
example then gives us a group, the Fglner function of which verifies Inequality 2. For n € [ng;_1,72;] we
have % < % +1+ %, which is smaller than 3 for large n. On the other hand, if n € [125,72;41],
% > &£(n+7(n/C)) = & + &. In particular, it is strictly larger than 4 for large n. Thus, %

neither converges towards a finite number, nor diverges towards +c0. However, we can still consider lim inf.

Proposition 2.4. For any given group and generating set, the supremum of the constants C such that
.. LI Fol(n)
AFol(n) = V(Cn — B) for some A,B is Cg.g = i inf =

lim BV 00
n.

Proof. Assume that AFgl(n) > |B(Cn — B)| for some A, B, C. For any n, we have
InFol(n) - In(|B(Cn—B)|) —InA Cln(|B(C’n -B)) A
n - n B Cn n

where A’ is a constant. This is in particular true on any subsequence and thus
5
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.. o InFgl(n)

lim inf =22

n >C

lim 2oa -
n

nf I le(u)

. lim i
Inversely, if C' < lm;

i 5
n

, by definition of lim and liminf, there is Ny such that for any n > Ny,

In Fol(n) .
wrsteny > C. Equivalently,
Cn

In Fgl(n) In(|B(Cn)|)
= 0= ", or

Fgl(n) = |B(Cn)|.
By choosing appropriate A and B we obtain the result for n < Ny as well. O

In order to provide an example where Cg g < 1, we will need to consider a generalisation of wreath
products.

Definition 2.5. Consider a group A acting on a set X and denote the action by a. The (restricted)
permutational wreath product A1, B is the semi-direct product of A and B) where A acts on BX) by
translation.

Remark that a wreath product A B is the permutational wreath product with regards to the action
of A on itself by multiplication.
Consider the infinite dihedral group Do, defined as

Dy = {a,z|z* = e,zax = a™ ).

Alternatively, it is the semi-direct product of Z/2Z on Z, with the non-identity acting as the inverse map
on Z. All elements can thus be written either as za™ or as a™ for some n € Z. We will consider it with a
different generating set : the set {x,y} where

Yy = za.
Note that xaz = a~! becomes (za)? = e and thus the infinite dihedral group is the free product of two
copies of Z/2Z.

FIGURE 1. (A portion of the) Schreier graph of D, for the subgroup {e,z} with z (dashed,
black), y (blue) and a (thin, red). We will consider it with the generating set {z,y} (without
the red lines)

Consider the subgroup {e, 2} < Dy, and the (left) Schreier coset graph it defines (with generating set
{z,y}). We are interested in the associated action a of Dy, on the costets (defined by multiplication). By
definition, each vertex of the graph is of the form {g,zg}. Since z?

{g9,2g} = {wa",a"}
for some n € Z. Representing the set {za™,a™} with the integer n, the graph is pictured in Figure 1.
Considering it with the generating set {z,y}, it becomes a ray: 0,1,—1,2,—-2,3,-3,....

= e, we have

Example 2.6. The wreath product Do, Z2 with the generating set Sq;p, = {tz,ty, 9,120, 6ty, 6t,0,1,0, 0ty 6t,0}

lim inf 2Fol(n) Fol(n)
Tn V(n) <1

verifies CleaZ2ySdu.h T

83



Proof. Fix some integer n. We have standard Fglner sets on D, defined as
Ap = {akvxak; ‘k| < TL}
This gives us standard Felner sets on the wreath product D, , Z/27Z:

Faper = {(k, f); k| < n,supp(f) = An}.
Remark that since the Schreier graph of the action a is a ray, the boundary of the image of A, is only 1.

We claim that we thus have 1%nf2ntil — 1 pet g verify that. We have

Fania n+l-

[Fony1| = 2(2n + 1)227FL,
Consider a point (ea®, f) € 0, Fa, 11 where € = z or the neutral element e. By definition, there exists s € Sqn
such that (ea”, f)s = (s’ak/,f’) ¢ Foni1. We have either supp(f’) ¢ A, or cda ¢ A,. If supp(f’) € 4,
then either sa* or ¢’a* is not in A,. As ea” € A, by definition, we have e'ak’ ¢ A,. In both cases we obtain
that &a*’ ¢ A,. Therefore ea* € 0;,A,; or in other words k = —n. Thus

|Oin Fans1] = 2 x 227+1,

This proves that their quotient is 5-L5. Then Fgl(2n + 1) < 2(2n + 1)22"*! and

lim inf M <In2.

We now estimate V'(n). Consider products of type s1s5 ... s, where sg; € {t5,0t;} and sg;11 € {ty, 0ty }.
‘We have
8182...82; = (aﬂ., fai)
$182...82i41 = (lmiﬂ, f2i+1)

for some functions f;. Then the two choices of s; we consider determine the value of f,(i). In particular,
any two different choices result in s1s...s, being a different element of D, !, Z/2Z. Moreover, we have
that the length of s1s2...s, is n. Therefore V(n) > 2" and

InV(n)

lim ———= >1In2.
n

Applying Proposition 2.4 we obtain:
Corollary 2.7. The answer to Question 1.4 is at most 1.
We will also show that those Fglner sets are optimal in Section 4.

Proposition 2.8. In the wreath product Do, Zo with the generating set Sgin = {tz,ty, 6,150, 0ty, 0t,0,t,0, 0ty 6t,0},
the standard Folner sets Fo,1 = {(k, f);|k| < n,supp(f) < A, } are optimal with respect to the inner and
outer boundaries.

3. MAIN CONCEPTS OF THE PROOF

Definition 3.1. We will call a set F' in a group G optimal with respect to the inner (respectively outer,
edge) boundary if for any F' with |F'| < |F|, it is true that %22l > % (respectively % > %,

[F7]
/
‘flfj,‘l > %), and if |F’| < |F|, the inequalities are strict.

Lemma 3.2. If F is optimal for the outer boundary, up to replacing F with another optimal set of the same
size, F'|J 0ot F is optimal for the inner boundary,

Proof. We will prove the large inequality. The case for the strict inequality is equivalent.

Let F be optimal for the outer boundary and consider F’ such that |F’| < [F | dou: F'| and the quotient
of the inner boundary is smaller. Without loss of generality, we can assume that F’ is optimal for the inner
boundary.

Let F” = F\0;, F’. Observe that 0yt F" < 0;, F'. We first claim that F’ being optimal implies that
Oout F" = 0;, F”. Indeed, |F" | our F"| < |F'|, and
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[Oout |

|0in (F" U ot F")| _ |Oout "] _ [F7]
70T S T U]~ 1+ B
while

PO, [0in F'|

0 '] _ T
Fl [0inF']

L

As Oy F" < 0;n F' and ZLH is an increasing function in R, the first quantity is smaller then the

second, and by F’ being optimal, we have an equality.
We now consider cases for the size of F”. If |F”| < |F|, then we can apply the assumption that F is
optimal and we get

[0in F'|
2ol _ 10" _ 0P| _ i
FT S I T PNGGF]  1- BT

However, applying the initial assumption by which we chose F’ gives us the inverse inequality, and
strict.

We are left with the case where |F”| > |F|. Let k = |F"| — |F| and remove any k points from F” to
obtain F”. We obtain a set that is the same size as F' and has an outer boundary no larger than that of
F. It is therefore another optimal set of the same size, and by the optimality of F’ for the inner boundary,
F" 04, F" = F', which concludes the proof. ]

The central idea of this paper is to work on an associated graph structure which we can define for a
group, the elements of which we have written in the form (n, f).

Definition 3.3. Consider a group G and an encoding of its elements as pairs (n, f) € A x B. Consider a
generating set S of GG. We define the associated graph as the directed labelled graph I' = I's with vertex set
V(T') = B and edge set

E = {(f1, f2) : 3s € 8,n1,ny € A such that (nq, f1)s = (na, f2)}.
With those notations, the edge (f1, f2) is labelled s.

As mentioned, the two examples we will consider here are the lamplighter group Z ! Z, and the
Baumslag-Solitar group BS(1,p). In both examples we have A = Z. In the case of the lamplighter group
we have B = ZéZ), and for BS(1,p), B is the set of p-adic numbers.

We define an associating function ¢ : G — P(T") by

o(n, ) ={(f, [;)(n, f)s = (0, f;) for some n’ € A,s € S}.

Definition 3.4. Consider a group G and an encoding of its elements as pairs (n, f) € A x B. Let F be a
finite subset of G. The associated subgraph of F is the subgraph of the associated graph I" made of the edges

U o)
zeF
and all adjacent vertices.

We will provide a bound for the boundary of a set based on a formula on the associated subgraph,
and maximise the value of that formula over all subgraphs of I" no larger (in terms of number of edges) than
the associated subgraph.

4. THE LAMPLIGHTER GROUP

In this section we provide the proof of Theorem 1.3, the larger part being a proof of Theorem 1.3(1). In
other words, we show that the standard sets are optimal with respect to the outer boundary, and uniquely
so up to translation. We will present it in a more general context, so that Proposition 2.8 also follows.
Specifically, they will be shown to follow from the following lower bound:

8

85



Theorem 4.1. Consider a permutational wreath product Al,Zo, where A is infinite, equipped with generating
set that includes a set of elements of the form (t,Ip) where the set of these t generates A. Denote by 3 the
cardinal of any (every) stabiliser of the action. Then for every finite subset F' of A, Zo with |F| < fn2",
we have % = ﬁln Furthermore, equality can only be achieved by sets, the associated subgraph of which
is formed of all configurations with support in some set I in the space acted on, such that the boundary of 1

is exactly 2/.

Remark in particular that for those groups we will have lim inf % > n2%h.
We first prove an inequality relying the isoperimetry of a subset with values of the associated subgraph.

Lemma 4.2. Let F be a finite set in A, Zo. Let T be the associated graph (see Definition 3.3). Then

|6T;|F| > min (% for G subgraph of T with at most |F| edges> .

We will obtain that by estimating the number of points in the boundary that are reachable from the
set by multiplication by a generating element of A. Remark that every (labelled) edge corresponds to exactly
(3 elements in the group.

Proof. Consider a finite set F of elements of A, Zs. Let F be the associated subgraph (see Definition 3.4).
A leaf we call a vertex which is included in exactly one edge of the subgraph and is at the head of that edge.

The set of leaves we denote by L(F'). We claim:

(5) |00t F| = 2[V(F)| = |L(E)| = 2(|V(F)| = |L(E)]) + |L(F)].

More specifically, we claim that for each configuration f that is a vertex of this subgraph, either f is
a leaf and there is at least one element of 0, F that has f as its configuration, or f is not a leaf and there
are at least two such elements. The first case follows directly from the definition of a leaf.

Assume that f is not a leaf. Then either there are two edges ending in f, or there is at least one edge
starting at f. Once again, the first case follows directly from the definition. In the second case, A being
infinite implies that its Cayley graph has Z as a subgraph, and thus any subset of A has at least two points
in its boundary. If they are a and b, then (a, f) and (b, f) are in the outer boundary of F'.

Now we only need to prove that

VI~ L) . (Q\V(G)\

|E(F)| : |E(G)|

We will prove it by induction on the number of edges. The base is trivial, and so is the case where F

has no leaves. Assume now that it contains a leaf and remove that leaf and the edge leading to it. Denote

by F” the set we obtained. We have |V(F')| = |V(F)| -1, |E(F")| = |E(F)| — 1 and |L(F")| > |L(F)| — 1.
Therefore

for G subgraph of I" with at most |F| edges> .

2V (F)| — [L(F)| _ 2lV(E)| ~ [LF) =1 _ 2V(F)| — |L(F)|
|E(F)] |[E(F) -1 |E(F)|
Furthermore, F’ has less edges, which concludes the induction step. O

Having proven Lemma 4.2, we now need to show that the standard sets minimise QI‘E‘Y/((GG))I‘ over subgraphs

of I with a fixed amount of edges. It would suffice to show that any subgraph with strictly less vertices has
strictly less edges. In other words, we have to understand the sets of fixed size that maximise the amount
of edges between them. Remark that if a graph contains the directed edge (z,y), adding the edge (y,z)
increases the number of edges without changing the number of vertices. We can therefore assume that any
directed edge is present simultaneously with its inverse and replace them both with one undirected edge.
The graph we obtain is the infinite hypercube. As the subgraphs G we consider are finite, by hy-
pothesis, they are contained in a finite hypercube. In that case, the question of maximising the number
of edges on a fixed number of vertices has already been answered in literature. One proof is presented in
Harper’s book [13, Section 1.2.3]. Taking notations from the book, for any subset C' ¢ N of cardinal ¢, and
any configuration f supported outside of C, we consider the set of vertices that are equal to f outside of
C and can be anything inside C' and call that a c-subcube. A vertex set S of cardinal k = Zfil 2% with
9
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¢; < ¢j for i < j is cubal if it is a disjoint union of ¢;-subcubes with the ¢;-subcube being contained in the
neighbourhood of the c;-subcube for ¢ < j. Here, neighbourhood means the set of points at distance 1 in
graph distance. Remark that two cubal sets of the same cardinality are isomorphic. Then Theorem 1.1 from
the cited section states

Theorem 4.3 ([13, Section 1.2.3 - Theorem 1.1]). S mazimises |E(S)| for its cardinality if and only if S is
cubal.

As the associated graphs of the standard sets are cubal, and all cubal sets of a size that is a power of
2 are also subcubes, Theorem 4.1 follows. We have now obtained Theorem 1.3(1) and the outer boundary
case of Proposition 2.8.

We now turn to the general case. By Lemma 3.2, Theorem 1.3(2)a follows from Theorem 1.3(1) (and
the unicity of the optimal sets). To show that Theorem 1.3(2)b follows from Theorem 1.3(2)a, observe that
we always have 0;,F' < 0}, F, and their sizes are the same for the standard sets. The inner boundary case of
Proposition 2.8 also follows as in that group we have F,, | J doutF, = Fn41 (similarly to the switch-walk-switch
generating set). Theorem 1.3(3) follows directly from Theorem 1.3(2).

5. BOUNDS FOR THE COULHON AND SALOFF-COSTE INEQUALITY FOR THE LAMPLIGHTER GROUP

We recall that in terms of exponential growth, the Coulhon and Saloff-Coste inequality implies

Corollary 5.1. Given a group G and a generating set S, the Folner function Fgl(n) and the volume growth
V(n) verify

lim inf

InFol(n) - llim InV(n)
n ~2 n

We will now prove Proposition 1.5. Recall its statement:
Proposition. The lamplighter group verifies

In Fgl(n)
n

lim _ 9 88
lim V() ln(%(l + \/3)) oo

n

for the standard generating set, and

Proof. We have lim {/Fol(n) = lim {/Folg,s(n) = 4. What is left is to calculate the exponent of their
volume growth.

For the standard generating set, we write an element in a standard form. To obtain it, we consider
the support of the element’s configuration. If that support is [m,p] we can then write it as ™ At! where A
is a non-reducible word of length at most p — m on ¢ and 0 (without their inverses). In particular, m, 7 and
p —m are all less than n. Therefore if we denote by V’(n) the amount of non-reducible words on ¢ and § of
length at most n, we obtain that V/(n)4n? > V(n) > V'(n). We then need only to understand V (n). Notice
that the only condition on those words in the lamplighter group is to not have two consecutive 6-s. Therefore
V'(n) is same as the amount of subsets of [1,n] without two consecutive elements. A simple induction shows
that those are (up to translation) the Fibonacci numbers: such a subset either has n in it, in which case the
rest of the subset is contained in [1,n — 2], or it does not have n. Therefore lim {/V (n) = HT‘@

The switch-walk-switch volume is similarly controlled by the size of the set of possible configurations
given a certain interval. However, in its case all configurations with support in that interval are found on an
element in the ball. Thus 4n%2" > Vi,s(n) > 2" and lim §/Viys(n) = 2. O

It is worth noting that the exact value of the volume growth power series Y}, V' (n)z™ for the standard

generating set has been described by Parry [21].
10
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6. THE BAUMSLAG-SOLITAR GROUP B(1,2)

Similarly to the case of the lamplighter group, it is important to understand subgraphs of the asso-
ciated graph with n vertices and a maximal number of edges. In the case of the Baumslag-Solitar group,
configurations are represented by sums of powers of 2, with the value of a configuration at a given point
representing the presence or absence of a given power. As a conjugation by the active generator in the group
amounts to multiplying by a power of 2, without loss of generality we can assume that the vertices of I" are
the natural numbers, and that edges are of the form (n,n + 2¢) for n,i € N. Furthermore, as this structure
is preserved by translation by an integer, we can assume that the smallest vertex label in our subgraph is 1.
We will prove:

Lemma 6.1. A subgraph with a mazimal number of edges and n vertices is [[1,n].

Proof. We will prove the result by induction on n. Fix a subgraph F with n vertices. We will prove that it
has less edges than [[1,n]], the equation being strict unless they are equal (or a translation thereof).

Assume first that all elements of F' are odd. In that case we consider the set F' = {f —1: f € F}.
Let 2! be the largest power dividing all elements of F”. Define ¥(f) = f;I + 1. Then the set (F) is a set
of integers with the smallest element being 1. Furthermore, f — f’ is a power of 2 if and only if ¥(f") — ¥ (f)
is. Without loss of generality we can replace F' by ¢(F).

We now have that F' has both even and odd elements. Let Fj be the set of odd elements of F', and Fy
the set of even elements. By F} we will denote (F; — 1)/2, and by F} we will denote F5/2. As the difference
between elements of F; and F5 is always odd, there can be an edge if and only if the difference is 1. Then
the number of edges in F' is not greater than

e(|1F1]) + e(|Fel) + 2min(|F1[, |[Fo]) — &

where e(n) is the number of edges in [[1,n]] and € = 1 if |Fy| and |F3| are equal, and 0 otherwise.
For a € N with 25~ < a < 2¥ we have that e(a) is the sum over i of the amount of edges between
elements with difference 2°. In other words,

k—1
e(a) = Za72’: =ka—2F+1.
i=0
Let us denote 27! < a = |Fy| < 2F, 27! < b= |Fy| < 2! and 2! < a + b = n < 2!. Without loss of
generality, assume a < b. Then t — 1 <1 <t. Let § =t —[. We calculate

e(|F1]) + e(|Fs|) + 2min(|Fy|, |[F2|) — e — e(n) = e(a) + e(b) + 2a — ¢ — e(n)
=ka—2"4+1+0b—-2"+1+2a—c—nla+b)+2"—1
=(k—1+2a—6a+b)+1-2"+2"—2' —c = A

Since t — 1 < [ < ¢, we have 6 = 0 or 1. We consider those two cases. First, assume § = 0. Then
2t = 2! and
A=(k+2—tla+1-2"—¢.
Ask<t—1,wehave A<a+1—-2F—e<0.
Assume now § = 1. Then

A=(k+3—tla—n+1-2F 4271 ¢
Assume first that k <¢—2. Then A<a—2F—(n—2"1 —1) — ¢ <0.
The only case left is k = ¢ — 1. Then
A=a—-b+1—c¢.

Ifa—b=0,thene=1and A=0.Ifa—b< —1,then A < —e<0. O

Considering the edge boundary, the Baumslag-Solitar group has two types of edges on the boundary
corresponding to the two generators. In the last section, we described the boundary corresponding to (1, 0).
We will now also describe the boundary corresponding to (0,1). As before, for an element (n, f) in a set

F in the group, we can consider its orbit by (0,1), which is isomorphic to Z and therefore has at least two
11
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elements in the boundary. Therefore the boundary corresponding to (0, 1) is at least 20(I'r) where o(I'r) is
the amount of orbits corresponding to adding 2" for some n for some subgraph I' — F of I'. For the subgraph
[1,n]], that number is n — 1. We will prove that that is optimal by induction on |V(I'r)| + o(T'r).

Lemma 6.2. Consider a subgraph T such that |V(Lg)| + o(r) = 2n—1 or 2n. Then it has at most e(n)
edges.

Proof. We will prove it by induction on n. Without loss of generality, we can assume that I'r has both
even and odd vertices, the sets of which we denote F; and F». Once again, without loss of generality we
can assume that there is at least one edge between F; and F, (otherwise we can move F5 to a set of even
elements disjoint from F; and divide everything with a power of 2). Therefore o(T'r) > o(F1) + o(F2) + 1
and |V(FF)‘ = |V(F1)| + ‘V(Fg)‘ Then 2n—1 > ‘V(FF)‘ +()(FF) —1> ‘V(F1)| + O(Fl) + ‘V(F2)| + O(FQ).
Ifk = [w] and ko = [w], this implies k; + k2 < n. The rest follows from the proof of
Lemma 6.1. O

Consider a set F' in the Baumslag-Solitar group B(2,1). Its boundary is then at least
[0F| = 2([V(I'r)| + o(I'F)).
Therefore I'p has at most e(|0F|) edges. To each element in F' correspond two edges. They are either in
thee graph (where each edge is counted twice) or sticking out of it along an orbit. We obtain
2|F| = 2|E(I'F)| + 20(T'F).
This concludes the proof of Theorem 1.6.

Finally, we consider BS(1,8) with the standard generating set. The standard Felner set Fy is {z + f :
f€N,0< f <7} It has 8 elements, and |0F| = 2.8 + 2 = 18. Consider the set F = {(k,f):k=1or2,f €
Z,0 < f < 3}. Similarly, we have |F| = 8. However, [0F| = 2.4 + 2.2 = 12 < 18. Therefore the result of
Theorem 1.6 is not true for BS(1,8) for small enough sets.
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RESUME

On étudie les marches aléatoires sur les groupes, et plus généralement les marches induites par des mesures sur des
groupes. On cherche & comprendre leur comportement & l’infini, surtout en terme du non-trivialité de leur bords de
Poisson. On s’intéresse en particulier aux sous-groupes de H(Z), y compris le groupe de Thompson F'. Le groupe H(Z)
est le groupe des homéomorphismes projectifs par morceaux sur les entiers défini par Monod. Pour un sous-groupe H
de H(Z) de type fini, on montre que soit H est résoluble, soit pour tout mesure sur H dont le premier moment est fini
et le support engendre H en tant que semi-groupe, le bord de Poisson de la marche aléatoire sur H est non-trivial. En
particulier, on démontre la non-trivialité du bord de Poisson des marches aléatoires sur le groupe de Thompson F' pour
les mesures sur F' dont le support I’engendre en tant que semi-groupe et qui sont de premier moment fini. Cela réponde
a une question de Kaimanovich.

Considérons une action transitive d’un groupe G de type fini, et le graphe de Schreier I' que cette action définit pour un
ensemble générateur fixé. Pour une mesure de probabilité ;1 sur G de premier moment fini, on prouve que si la marche
aléatoire induite sur I' est transiente, alors elle converge vers un bout de I". On obtient comme corollaire que pour une
mesure de probabilité de premier moment fini sur le groupe de Thompson F'; dont le support engendre F' en tant que
semi-groupe, la marche aléatoire induite sur les nombres dyadiques a un bord de Poisson non-trivial. Il est nécessaire
d’avoir une hypothése sur le moment de la mesure d’aprés un résultat de Juscheno et Zheng.

En outre, on calcule les valeurs exactes des fonctions de Fglner sur le groupe d’allumeur de réverberes Z 1 Z/27 pour
I’ensemble générateur standard et ’ensemble générateur «switch-walk-switchs». Les fonctions de Fglner encodent les
propriétés isopérimétriques des groupes moyennables et ont été auparavant étudiées & équivalence asymptotique prét
(autrement dit, de fagon indépendante du choix d’ensemble générateur fini). On obtient aussi une borne inférieure pour
les fonctions de Folner d’une classe de produits en couronnes permutationnels (avec certains ensembles générateurs).
On l'utilise pour construire un exemple de groupe dont la fonction de Fglner a la méme exponente que sa fonction
de croissance. De plus, on démontre un résultat isopérimétrique par rapport au bord sur les arrétes sur le groupe de

Baumslag-Solitar BS(1,2) avec '’ensemble générateur standard.

MOTS CLES

Marches aléatoires sur les groupes, bord de Poisson, graphe de Schreier, espace des bouts, groupe F' de Thomp-
son, groupes d’homéomorphismes projectifs par morceaux, groupes resolubles, groupes localement resolubles,
auto-similarité, fonction de Fglner, groupe d’allumeur de réverberes, produits en couronnes, produits en cou-
ronnes permutationnels, groupe de Baumslag-Solitar, inégalité de Coulhon et Saloff-Coste, fonction de crois-
sance

ABSTRACT

We study random walks on groups, and more generally walks induced by measures on groups. We seek to understand
their limit behaviour, in particular in terms of whether their Poisson boundary is trivial or not. We are specifically
interested in measures on subgroups of H(Z), including Thompson’s group F'. The group H(Z) is the group of piecewise
projective homeomorphisms over the integers defined by Monod. For a finitely generated subgroup H of H(Z), we
prove that either H is solvable, or for every measure on H with finite first moment and support that generates H as
a semigroup, the random walk on H has non-trivial Poisson boundary. In particular, we prove the non-triviality of
the Poisson boundary of walks on Thompson’s group F' induced by measures, the support of which generates F' as a
semigroup and which have finite first moments. This answers a question by Kaimanovich.

Consider a transitive action of a finitely generated group G and the Schreier graph I' defined by this action for some
fixed generating set. For a probability measure p on a group with a finite first moment we show that if the induced
random walk on I' is transient, it converges towards the space of ends of I'. As a corollary we obtain that for a probability
measure with a finite first moment on Thompson’s group F, the support of which generates F' as a semigroup, the
induced random walk on the dyadic numbers has a non-trivial Poisson boundary. Some assumption on the moment of
the measure is necessary as follows from an example by Juschenko and Zheng.

Additionally, we calculate the exact values of the Fglner function of the lamplighter group ZZ/2Z for the standard
and the switch-walk-switch generating sets. Fglner functions encode the isoperimetric properties of amenable groups
and have previously been studied up to asymptotic equivalence (that is to say, independently of the choice of finite
generating set). We also obtain a lower bound for the Fglner function for a class of permutational wreath products
(with certain generating sets). We use that bound to construct an example of a group, the Fglner function of which
has the same exponent as its growth function. What is more, we prove an isoperimetric result concerning the edge

boundary on the Baumslag-Solitar group BS(1,2) with the standard generating set.

KEYWORDS

Random walks on groups, Poisson boundary, Schreier graph, end space, Thompson’s group F, groups of
piecewise projective homeomorphisms, solvable group, locally solvable group, self-similarity, Fglner funct
lamplighter group, wreath products, permutational wreath products, Baumslag-Solitar groups, Co
Saloff-Coste inequality, growth function
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