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Chapitre 1

Pr�esentation des r�esultats

Mes deux premiers r�esultats portent sur les marches al�eatoires induites
par des mesures sur des groupes (voir Section 2.4.1). On �etudie leur com-
portements asymptotiques, surtout en terme de leurs bords de Poisson
(voir D�e�nition 28, Section 2.4.2). Dans [1] (voir Chapitre 3), on consid�ere
les sous-groupes du groupe des hom�eomorphismes projectifs par morceaux
sur les entiers H(Z), pr�esent�e dans un article de Monod [Mon13]. On va
expliquer les r�esultats de Monod et d�e�nir ce groupe dans la Section 2.1.5.
On aborde la question si des mesures sur les sous-groupes de H(Z) sont
Liouvilles, c'est-�a-dire si la marche induite sur le sous-groupe a un bord
de Poisson trivial.

Th�eor�eme A. Pour tout sous-groupe H de H(Z) qui n'est pas localement
r�esoluble et toute mesure µ sur H avec une esp�erance �ni du nombre de
�ns de morceaux (voir la d�e�nition de H(Z) dans Section 2.1.5) et dont
le support engendre H comme semi-groupe, (H,µ) n'est pas Liouville.

Comme H(Z) contient le groupe F de Thompson comme sous-groupe,
cela r�epond en particulier �a une question de Kaimanovich [Kai17, 7.A].

Dans [2] (voir Chapitre 4), on s'int�eresse aux questions qui sont, comme
dans [1], relatifs aux marches al�eatoires induites par des mesures sur des
groupes, mais cette fois on consid�ere les marches induites par une action
du groupe. Le bord de Poisson de cette marche est toujours un quotient
du bord de Poisson de la marche sur le groupe (voir Section 2.4.3). On
obtient des r�esultats sur les comportements asymptotiques des marches
provenant d'une classe de mesures de premier moment �ni :

Th�eor�eme B. Consid�erons une action transitive d'un groupe G. Soit
S un ensemble g�en�erateur et Γ le graphe de Schreier associ�e. Soit µ une
mesure sur G avec premier moment �ni tel que la marche al�eatoire induite
sur Γ est transiente. Alors elle converge presque surement vers un bout
(al�eatoire) du graphe.

On y trouve un corollaire qui s'applique en particulier au groupe F de
Thompson.
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Corollaire C. Consid�erons une action transitive d'un groupe G. Soit S
un ensemble g�en�erateur et Γ le graphe de Schreier associ�e. Supposons que
Γ est transient. Alors pour tout mesure µ sur G dont le support engendre
G en tant que semi groupe et qui a un premier moment �ni, la marche
al�eatoire induite converge presque surement vers un bout du graphe.

On peut appliquer ce corollaire �a l'action de F sur les nombres dya-
diques. Il n'est pas di�cile d'obtenir que la convergence vers les bouts
implique que les bords de Poisson des marches induites par ces mesures
ne sont pas triviaux.

Dans [3] (voir Chapitre 5) on s'int�eresse aux pro�ls isop�erim�etriques
des groupes, encod�es par la fonction de Følner (voir Sections 2.3.3 et 2.3.5).
Cette fonction a �et�e auparavant �etudi�ee �a �equivalence asymptotique pr�es
(autrement dit, de fa�con ind�ependante du choix de l'ensemble g�en�erateur
�ni (voir Section 2.3.4)). On obtient ses valeurs exactes pour deux exemples
classiques :

Th�eor�eme D. La fonction de Følner sur le groupe ZoZ/2Z est, pour n ≥
2, Føl(n) = 2n22(n−1) pour l'ensemble g�en�erateur standard et Følsws(n) =
2n22n pour l'ensemble g�en�erateur ¾switch-walk-switch¿.

On donne aussi une description des ensembles de Følner pour lesquels
on obtient une �egalit�e.

On obtient de plus un r�esultat isop�erim�etrique sur le groupe de Baumslag-
Solitar BS(1, 2) = 〈a, b|bab−1 = a2〉 en terme du bord par rapport aux
ar�etes.

Th�eor�eme E. Consid�erons le groupe de Baumslag-Solitar BS(1, 2) avec
l'ensemble g�en�erateur {a, b}. Alors pour tout n ∈ N et tout F ⊂ BS(1, 2)

�ni tel que |F | ≤ |Fn|, on a |∂F ||F | ≥
|∂Fn|
|Fn| , o�u Fn sont les ensembles de

Følner standards (voir �Equation 2.4), et si |F | < |Fn|, l'in�egalit�e est
stricte.
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Chapitre 2

Contexte historique

2.1 Moyennabilit�e

2.1.1 D�e�nitions

L'origine de la notion de moyennabilit�e vient du paradoxe de Banach-
Tarski (ou Hausdor�-Banach-Tarski). En 1924, Banach et Tarski [BT24]
d�ecoupent la boule de R3 en un nombre �ni de parties, puis, en y appli-
quant des isom�etries, ils reconstruisent deux boules chacune identique �a
la premi�ere. Leur preuve est inspir�e par un r�esultat similaire de Hausdor�
sur la sph�ere. Cela est contraire �a l'id�ee intuitive de volume, et, claire-
ment, les morceaux ne sont pas Lebesgue-mesurables. Pour comprendre la
structure qui permet cela, �etant donn�ee une action (�a droite) d'un groupe
sur un espace, on d�e�nit :

D�e�nition 1. Soit un groupe G qui agit sur un ensemble X. On dit que
l'action est paradoxale s'ils existent deux entiers positifs m et n et des
sous-ensembles A1, A2, . . . , Am, B1, . . . , Bn de X deux-�a-deux disjoints,
ainsi que g1, g2, . . . , gm, h1, . . . , hn ∈ G tels que X =

⋃
(Ai)gi =

⋃
(Bi)hi.

Avec cette notation, le paradoxe de Banach-Tarski dit que l'action
des isom�etries de R3 sur une boule est paradoxale. Cette propri�et�e est
reli�ee �a la structure du groupe des isom�etries de R3. En e�et, d�e�nissons
qu'un groupe est paradoxal si l'action sur lui-m�eme par multiplication �a
droite l'est. Alors pour une action paradoxale de G sur X, pour un point
x ∈ X, en prenant des ensembles obtenus comme images inverses d'un
d�ecomposition paradoxale surX par g → x.g on obtient une d�ecomposition
paradoxale sur G. Le groupe est donc paradoxal, et on peut aussi obtenir
un r�esultat inverse partiel (voir [Wag93]) :

Proposition 2. Si G est paradoxal et agit librement sur X, alors cette
action est paradoxale.

On peut donc, comme remarqu�e par John von Neumann, chercher une
explication du paradoxe dans les propri�et�es du groupe des isom�etries de
R3. Cela donne une premi�ere d�e�nition de moyennabilit�e :
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D�e�nition 3. Un groupe est moyennable si et seulement s'il n'est pas
paradoxal.

Remarquons qu'on parle ici de moyennabilit�e des groupes d�enombrables.
Des notions plus g�en�erales existent pour les groupes topologiques.

Plus g�en�eralement, une action est moyennable si et seulement si elle
n'est pas paradoxale. Aujourd'hui il existe des nombreuses caract�erisations
de la moyennabilit�e (voir [Bar18],[CSGdlH99],[Gre69],[Wag93]). Commen�cons
par la d�e�nition canonique de moyennabilit�e, donn�ee (sur les groupes) par
John von Neumann. Les notations qu'on utilisera sont inspir�ees par le livre
de Juschenko en pr�eparation [Jus15] et le survol de Bartholdi [Bar18]. Soit
G un groupe agissant �a droite sur X. Une moyenne (ou moyenne l∞ ;
¾mean¿ en anglais) sur X est une fonctionnelle lin�eaire µ sur l∞(X) qui
v�eri�e µ(χX) = 1, µ(0) = 0 et µ(f) ≥ 0 pour chaque f ≥ 0. Pour une
fonction f sur X et g ∈ G, on d�enote par Tg(f) la fonction x 7→ f(x.g−1)
pour tout g ∈ G. Une moyenne sur X est invariante (�a droite) si pour
chaque f ∈ l∞(X), g ∈ G,

µ(Tgf) = µ(f).

D�e�nition 4. Un groupe G (respectivement une action G y X) est
moyennable s'il (respectivement elle) admet une moyenne invariante sur
G (respectivement sur X).

Remarquons qu'en consid�erant l'action �a gauche par g−1, une moyenne
invariante �a droite devient invariante �a gauche. Le choix de cot�e est donc
une convention que chaque auteur choisit. En passant par la dualit�e entre
fonctionnelles et mesures, on a de mani�ere �equivalente :

D�e�nition 5. Un action G y X est moyennable si et seulement s'il
existe µ : P(X)→ [0, 1] qui v�eri�e µ(X) = 1, µ(∅) = 0,

µ(A ∪B) = µ(A) + µ(B)

pour A ∩B = ∅ et

µ(E.g) = µ(E)

pour tout g ∈ G, E ∈ P(X).

Une telle ¾mesure¿ est dite moyenne sur les sous-ensembles de X.
Il est assez claire que l'existence d'une d�ecomposition paradoxale im-
plique la non-moyennabilit�e. Le sens inverse a �et�e montr�e pour une ac-
tion de groupe sur lui-m�eme par multiplication par Tarski [Tar38]. Cela
montre l'�equivalence entre D�e�nition 4 et D�e�nition 3 pour les groupes.
On pr�esente maintenant plusieurs d�e�nitions �equivalentes :

Th�eor�eme 6. Consid�erons une action Gy X. Alors on a une �equivalence
entre :

1. Gy X est moyennable.
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2. (Condition de Reiter [Rei68, Chapitre 8]) Pour chaque E ⊂ G
�ni et ε > 0, et pour p ≥ 1 (p = 1), il existe φ ∈ lp(X) tel que
‖Tsφ− φ‖p ≤ ε‖φ‖p pour tout s ∈ E.

3. (Condition de Følner [Føl55]) Pour chaque E ⊂ G �ni et ε > 0,
il existe un ensemble �ni F ⊂ X (appel�e ensemble de Følner) qui
v�eri�e :

|F.s4 F | ≤ ε|F | pour tout s ∈ E.
Remarquons que pour un groupe de type �ni, il su�t de �xer un

ensemble g�en�erateur �ni pour E. Remarquons aussi que pour ces deux
d�e�nitions on n'a pas besoin de l'axiome du choix. Par contre, la D�e�nition 4
avec les moyennes ne serait pas �equivalente sans cet axiome. M�eme sur le
groupe in�ni le plus simple, Z, on ne peut pas construire une moyenne in-
variante sans utiliser des ultra�ltres. Remarquons les exemples de groupes
moyennables qu'on voit ici : les groupes �nis et les groupes cycliques (c'est
imm�ediat par exemple en utilisant la condition de Følner).

Proposition 7 (Crit�ere de Kesten [Kes59]). Une action G y X est
moyennable si et seulement si pour une (toute) mesure sym�etrique non-
d�eg�en�er�ee µ sur G, le rayon spectral

ρ(p, x) = lim sup
n→∞

n
√
pn(x, x)

de la marche induite sur X est 1.

Ici pn(x, x) est la probabilit�e d'�etre au point x apr�es n pas en com-
men�cant de x. On va pr�eciser les termes relatifs aux marches al�eatoires
dans la Section 2.4.1.

A partir d'ici on va se concentrer sur les groupes moyennables plut�ot
que les actions moyennables. On y retrouve une crit�ere tr�es utilis�e. Consid�erons
un groupe G de type �ni. Soit S une ensemble g�en�erateur qui ne contient
ni l'�el�ement neutre, ni deux �el�ements qui sont mutuellement inverses. On
s'int�eresse aux mots sur l'alphabet S ∪ S−1. Comme on s'int�eresse aux
propri�et�es de groupe, on se permet de supprimer des combinaisons xx−1

ou x−1x, ce qui est notre action de r�eduction. On dit qu'un mot qui ne
contient pas de tels combinaisons est un mot r�eduit. On d�enote γn le
nombre de mots r�eduits de longueur au plus n sur S∪S−1 qui sont �egaux
�a l'�el�ement neutre comme �el�ements de G.

Une autre fa�con �equivalente de d�e�nir cela est de consid�erer le groupe
libre F|S| sur S (voir Section 2.1.3). Il y a un morphisme de groupes
naturel de F vers G - il su�t d'associer �a chaque �el�ement de S dans F
le m�eme �el�ement de S dans G. Si N est son noyau, γn est la taille de la
boule de rayon n dans N .

Proposition 8 (Crit�ere de co-croissance de Grigorchuk [Gri77]). G est
moyennable si et seulement si

lim
n→∞

n
√
γn = 2|S| − 1.
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Ce crit�ere n'est pas di�cile �a prouver en utilisant le crit�ere de Kesten,
mais sa formulation alg�ebrique le rend tr�es utilisable. On va approfondir
sur ses applications dans la Section 2.1.3.

2.1.2 Groupes �el�ementairement moyennables

Il suit directement des d�e�nitions que la moyennabilit�e est pr�eserv�ee
par plusieurs op�erations :

Proposition 9. Tout sous-groupe H d'un groupe moyennable G est moyen-
nable.

Proposition 10. Soit Gi une suite de groupes moyennables telle que
Gi ⊂ Gi+1 pour chaque i. Alors G =

⋃∞
i=0Gi est moyennable.

Corollaire 11. Un groupe est moyennable si et seulement si chaque sous-
groupe de type �ni l'est.

Proposition 12. Si G est moyennable et N est un sous-groupe normal,
alors G/N est moyennable.

Proposition 13. Si N est un sous-groupe normal de G, et N et G/N
sont moyennables, alors G est moyennable.

Avec le fait que les groupes cycliques sont moyennables, on obtient
d�ej�a que les groupes r�esolubles sont moyennables. De fa�con g�en�erale,
les groupes qu'on peut obtenir �a partir des groupes cycliques en appli-
quant ces propositions forment la classe des groupes �el�ementairement
moyennables. Comme on verra dans la Section 2.3.1, les groupes de
croissance sous-exponentielle sont moyennables. On obtient une classe
plus grande de groupes moyennables : c'est les groupes sous-exponentiellement
moyennables, qui sont les groupes obtenus �a partir des groupes de
croissance sous-exponentielle en appliquant ces op�erations. Ce ne sont
encore tous les groupes moyennables comme montr�e par Bartholdi et
Vir�ag [BV05]. On discutera sur leur r�esultat dans la Section 2.4.2 (le
groupe qu'ils utilisent comme exemple est d�e�nit dans la Section 2.2.3).

2.1.3 Sous-groupes libres

Consid�erons le groupe engendr�e par deux �el�ements a et b tel que chaque
mot r�eduit non-trivial sur ces deux �el�ements ne donne pas l'identit�e. De
fa�con �equivalente, on peut le consid�erer comme l'ensemble de mots r�eduits
muni de la concat�enation (puis r�eduction). On appelle cela le groupe libre
non-ab�elien �a deux g�en�erateurs, et on le d�enote F2.

Lemme 14. Le groupe F2 est paradoxal.

On va exhiber une d�ecomposition associ�ee. Prenons les quatre en-
sembles A1, . . . , A4 des mots r�eduits qui commencent par a, a−1, b et b−1

respectivement. Autrement dit,A1 = {ax0x1 . . . xn sous forme r�eduite, n ∈
N, xi ∈ {a, a−1, b, b−1}}, etc. Alors A1∪a.A2 = F2. Voir sur Figure 2.1 son
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graphe de Cayley (voir D�e�nition 20) avec A1 repr�esent�e par des lignes en
tirets (et en rouge si vous avez imprim�e en couleur) et A2 par des lignes
pointill�ees (bleus).

a−1a−1a−1a−1 b

b−1

b

baa−1

b−1

b−1

a−1 a

b

b

baa−1

a a

b−1

ba−1a−1 b

b−1

b−1

b−1

b−1

a−1 a

a−1a−1 b

b−1

a a

b−1

b

a a a a

b−1

b

b−1

b−1

a−1 a

b

baa−1

b−1

b−1

b−1

a−1 a

a−1a−1 b

b−1

a a

b−1

b

b

b

baa−1

a a

b−1

ba−1a−1 b

b−1

b−1

b−1

b−1

b−1

a−1 a

a−1a−1 b

b−1

a a

b−1

b

a−1a−1a−1 b

b−1

b

baa−1

b−1

b−1

a−1 a

a a a

b−1

b

b−1

b−1

a−1 a

b

baa−1

b

b

b

baa−1

a a

b−1

ba−1a−1 b

b−1

a a a

b−1

b

b−1

b−1

a−1 a

b

baa−1

a−1a−1a−1 b

b−1

b

baa−1

b−1

b−1

a−1 a

Figure 2.1 � Graphe de Cayley de F2

De mani�ere similaire, A3 ∪ b.A4 donne aussi le groupe tout entier.
En ajoutant l'�el�ement neutre dans un de ces ensembles, on obtient une
d�ecomposition paradoxale. D'apr�es Proposition 9, cela implique que chaque
groupe qui contient un sous-groupe libre est non-moyennable. Cela donne
la classe la plus �evidente d'exemples de groupes non-moyennables (on
peut en penser comme des groupes �el�ementairement non-moyennables).
Le groupe des isomorphismes de R3 appartient �a celle-ci, c'est-�a-dire qu'il
contient un sous-groupe libre. Par contre, trouver un exemple de groupe
non-moyennable en-dehors de cette classe n'est pas facile - la question
de leur existence est rest�ee ouverte pendant 30 ans. Elle a �et�e formul�ee
par Day dans les ann�ees 1950, ce qui �etait appel�e le ¾probl�eme de von
Neumann-Day¿. Le premier exemple a �et�e donn�e en 1980 et on en parlera
en d�etail dans la prochaine Section 2.1.4. Malgr�e le quantit�e �enorme de
d�e�nitions �equivalentes, �a notre connaissance, jusqu'�a r�ecemment, toutes
les (premi�eres) preuves de non-moyennabilit�e de groupes sans sous-groupe
libre sont faites avec le crit�ere de co-croissance (voir Proposition 8). Dans
la Section 2.1.5 on va pr�esenter des r�esultats autour d'un article qui
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change cela.
Plus g�en�eralement, on ne sait m�eme pas si avoir un sous-groupe libre

est une condition g�eom�etrique (on expliquera ce que cela veut dire dans
la Section 2.3.4). Cela conduit �a une des grandes questions ouvertes dans
le domaine - donner une condition de moyennabilit�e alg�ebrique.

Les deux approches les plus connues pour chercher des sous-groupes
libres sont le lemme du ping-pong et l'alternative de Tits [Tit72] :

Th�eor�eme 15 (Alternative de Tits). Soit G un sous-groupe de GLn(K)
pour n ≥ 1 et K un corps de caract�eristique z�ero. Alors soit G a un
sous-groupe libre non-ab�elien, soit G a un sous-groupe r�esoluble d'indice
�ni.

Plus g�en�eralement, il y a une fonction n 7→ λ(n) telle que, ind�ependamment
de K, si G n'a pas de sous-groupe libre, il a un sous-groupe r�esoluble d'in-
dice λ(n). Le r�esultat est aussi correct siK est de caract�eristique �ni, mais
seulement pour les sous-groupes de type �ni. Des th�eor�emes similaires ont
�et�e d�emontr�es pour d'autres groupes, et on dit qu'une classe de groupes
C satisfait l'alternative de Tits si tout groupe de la classe poss�ede soit un
sous-groupe libre, soit un sous-groupe r�esoluble d'indice �ni. Par exemple,
Karrass et Solitar [KS71, Th�eor�eme 3] ont montr�e que pour un groupe G
d�e�ni par une seule relation, soit il contient un sous-groupe libre, soit il
est r�esoluble. Explicitons ce que signi�e �etre d�e�ni par une seule relation.
Pour cela, on a besoin d'un lemme. Consid�erons un groupe G engendr�e
par un ensemble S. Il y a un morphisme naturel du groupe libre non-
ab�elien F|S| sur S vers G. On peut donc �ecrire G comme un quotient de
ce groupe (par le noyau du morphisme). On a donc :

Lemme 16. Tout groupe G est un quotient d'un groupe libre. De plus, si
G est de type �ni, il est quotient d'un groupe libre sur un nombre �ni de
g�en�erateurs.

On consid�ere alors un groupe comme le quotient Fk/N d'un groupe
libre Fk par un sous-groupe normal N . Si dans une telle repr�esentation,
N est engendr�e par un nombre �ni d'�el�ements comme sous-groupe nor-
mal, alors on dit que Fk/N est de pr�esentation �nie. Si de plus il est
engendr�e comme sous-groupe normal par un seul g�en�erateur A, on dit
que Fk/N est d�e�ni par une relation. On �ecrit Fk/N = 〈x1, . . . , xk|A〉 (o�u
S = {x1, . . . , xk}). Plus g�en�eralement, si A1, . . . , An sont des �el�ements de
Fk (dites aussi relations sur Fk), on d�enote par 〈x1, . . . , xk|A1, . . . , An〉 le
groupe Fk/N

′ o�u N ′ est le sous-groupe normal engendr�e par A1, . . . , An.
On les �ecrit parfois comme des �egalit�es : par exemple pour le Th�eor�eme E
on a d�e�ni BS(1, 2) = 〈a, b|bab−1 = a2〉. Cela veut dire que c'est le groupe
〈a, b|bab−1a−2〉.

Un autre exemple d'alternative de Tits est donn�e par les sous-groupes
des groupes modulaires des surfaces de Riemann [Iva84, McC85] (c'est-�a-
dire les classes d'isotopie des di��eomorphismes). C'est aussi vrai [Par92]
pour les groupes fondamentaux des vari�et�es M ferm�ees, orientables et
irr�eductibles de dimension 3 telles que H1(M,Z/pZ) ≥ 3 pour un p pre-
mier, ainsi que pour [Gro87, 8.2.F] les sous-groupes de groupes Gromov
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hyperboliques. Pour une liste plus compl�ete, voir le livre de Pierre de la
Harpe [dlH00, II.42].

2.1.4 Groupes de torsion born�ee

En 1902 William Burnside demande si chaque groupe de type �ni de
torsion est �ni, c'est-�a-dire s'il existe un groupeG in�ni de type �ni tel que
pour chaque g ∈ G il existe p > 0 tel que gp = Id. En 1964 la conjecture
est r�efut�ee. Ici on s'int�eressera au probl�eme de Burnside born�e : existe-t-il
un nombre entier p et un groupe in�ni de type �ni G tel que gp = Id pour
chaque g ∈ G ? Cette question se ram�ene aux groupes de Burnside libres,
qui sont des objets universels (dans un certain sens). On d�e�nit B(m,n)
comme le quotient de Fm par le sous-groupe normal engendr�e par les gn

pour g ∈ Fm. C'est un groupe de torsion n qui est universel pour tous
les groupes de torsion n engendr�es par au plus m �el�ements. Le probl�eme
de Burnside born�e demande alors s'il y a des groupes de Burnside libres
in�nis, et lesquels. En 1968, Adyan et Novikov [NA68] d�emontrent que
B(m,n) est in�ni pour m ≥ 2 et n ≥ 4381 impaire.

Ol'shanskii d�eveloppe leur m�ethode et en 1980 [Ol'80b] donne le pre-
mier exemple de groupe non-moyennable sans sous-groupe libre.
Plus tard dans la m�eme ann�ee, il pr�esente aussi des groupes de torsion
non-moyennables [Ol'80a]. On obtient m�eme une propri�et�e plus forte :
tous leurs sous-groupes sont cycliques. C'est ce qu'on appelle les monstres
de Tarski. Puisqu'un groupe non-moyennable est toujours in�ni, cela im-
plique qu'un nombre in�ni de groupes de Burnside sont in�nis.

En 1983 Adyan [Ady83] montre que B(m,n) pour m ≥ 2 et n ≥ 655
impaire est non-moyennable (et donc aussi in�ni). Dans [Gri80] Grigor-
chuk d�ecrit un groupe de torsion in�ni moyennable (voir Section 2.3.2).
Mais c'est une question ouverte [Sha06] de savoir si un groupe de Burn-
side peut �etre in�ni et moyennable. Plus g�en�eralement, on ne sait pas si
un groupe peut �etre in�ni, moyennable et de torsion born�ee.

Un autre exemple connu de groupe non-moyennable sans sous-groupe
libre est donn�e par Ol'shanskii et Sapir [OS03] quand ils d�ecrivent pour
la premi�ere fois un groupe non-moyennable sans sous-groupe libre de
pr�esentation �nie.

2.1.5 La classe de groupes H(A) d'un article de Monod

Monod [Mon13] construit une classe de groupes non-moyennables sans
sous-groupe libre d'hom�eomorphismes projectifs par morceaux H(A), o�u
A est un sous-anneau de R. Consid�erons l'action de PSL2(R) sur la ligne
projective r�eelle P1 = P1(R). Cette derni�ere peut �etre muni d'une topo-
logie canonique qui fait d'elle un cercle : par exemple, en la d�ecrivant
comme le quotient de S1 par la relation d'�equivalence x ∼ −x. On d�enote
G le groupe des hom�eomorphismes de P1 qui sont dans PSL2(R) par mor-
ceaux, avec un nombre �ni de morceaux et H la sous-groupe de G des

�el�ements qui �xent

(
1
0

)
∈ R2. Ce point devient le point∞ si on consid�ere
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la description de P1 comme R∪{∞}, et l'action comme

(
a b
c d

)
.x = ax+b

cx+d

(avec les conventions naturelles pour l'in�ni).
Soit A un sous-anneau de R. En particulier, on s'int�eresse au cas

o�u A est d�enombrable et dense. Soit PA ⊂ P1 l'ensemble des points
�xes d'�el�ements hyperboliques de PSL2(A). On d�e�nit G(A) comme
le sous-ensemble de G des �el�ements qui sont dans PSL2(A) par mor-
ceaux, avec les extr�emit�es des morceaux dans PA. On obtient le groupe
H(A) = G(A) ∩H, c'est-a-dire les �el�ements de G(A) qui �xent le point
in�ni. Ils �xent donc la ligne r�eelle, et on peut y penser comme des
hom�eomorphismes de R projectifs par morceaux. Monod obtient :

Th�eor�eme 17. Le groupe H(A) n'est pas moyennable si A 6= Z.

Th�eor�eme 18. Le groupe H ne contient pas des sous-groupes libres non-
ab�eliens. Alors H(A), comme sous-groupe, n'en contient pas non plus pour
chaque A.

Il vaut de noter que le Th�eor�eme 17 est obtenu en comparant l'ac-
tion de H(A) avec celle de PSL2(A). Pour H(Z), il est une question
ouverte s'il est moyennable, et il contient le groupe de Thompson F (voir
D�e�nition 31) comme sous-groupe (voir [KKL19]).

On retrouve des autres groupes int�eressants dans cette classe. Lodha [Lod20]

montre qu'un certain sous-groupe de H(Z[
√

2
2 ]) est de type F∞ (c'est-a-

dire, il existe un CW-complexeX connexe asph�erique dans chaque dimen-
sion avec un nombre �ni de cellules dans chaque dimension tel que π1(X)
est isomorphe au sous-groupe). Ce sous-groupe �etait construit avant par
Moore et Lodha [LM16] comme un exemple de groupe de pr�esentation
�nie non-moyennable sans sous-groupe libre. Il n'a que trois g�en�erateurs
et 9 relations, bien moins que l'exemple de Ol'shanskii-Sapir [OS03]. Il
est le premier exemple de groupe de type F∞ non-moyennable sans sous-
groupe libre. Plus tard, Lodha [Lod16] montre aussi que les nombres de
Tarski (le nombre minimal de pi�eces dans une d�ecomposition paradoxale)
des groupes H(A) sont born�ees par 25.

2.1.6 Produits en couronnes

On pr�esente ici une construction commune de groupes. On s'en int�eresse
en particulier dans [3] (voir Chapitre 5). Pour deux groupes A et B, no-

tons B(A) les fonctions de A sur B tels que tout sauf un nombre �ni de
points valent IdB.

D�e�nition 19. Le produit en couronne A o B est le produit semi-
directe de A sur B(A) o�u A agit sur B(A) par translations.

Si on �ecrit les �el�ements comme (a, f) o�u a ∈ A et f ∈ B(A), le produit
est donc (a, f)(a′, f ′) = (aa′, x 7→ f(x)f ′(xa−1)).

Pour un ensemble g�en�erateur S de A et S′ de B, on a un ensemble
g�en�erateur standard de A o B. Il est form�e des (s, IB) pour s ∈ S (o�u
IB(x) = IdB pour tout x ∈ A), ainsi que les (IdA, δ

s′

IdA
) pour s′ ∈ S′
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o�u δs
′

IdA
(IdA) = s′ et δs

′

IdA
(x) = IdB sinon. On peut v�eri�er que quand

on multiplie (a, f) �a droite avec le premi�ere type d'�el�ement, on obtient
(as, f), et avec le deuxi�eme type, on change le valeur de f au point a par
s′.

Similairement, �etant donne des ensembles de Følner FA et FB sur A
et B, cela donne des ensembles de Følner standards pour A oB. Soit

F = {(a, f)|a ∈ FA, supp(f) ⊂ FA, ∀x : f(x) ∈ FB}.

Alors (voir Section 2.3.3 pour la d�e�nition de ∂F ) :

∂F ={(a, f)|a ∈ ∂FA, supp(f) ⊂ FA,∀x : f(x) ∈ FB}⋃
{(a, f)|a ∈ FA, supp(f) ⊂ FA, f(a) ∈ ∂FB}.

On a |F | = |FA||FB||FA| et |∂F | = |∂FA||FB||FA|+|FA||FB||FA|−1|∂FB|.
Donc

|∂F |
|F | =

|∂FA|
|FA|

+
|∂FB|
|FB|

.

2.2 Graphes de Cayley et Schreier

2.2.1 D�e�nitions et r�esultats g�en�eraux

D�e�nition 20. SoitG un groupe de type �ni et S un ensemble g�en�erateur.
Son graphe de Cayley est Γ = (V,E) avec V = G et E = {(g, gs) : g ∈
G, s ∈ S}.
D�e�nition 21. SoitG un groupe de type �ni et S un ensemble g�en�erateur.

1. Un graphe de ¾coset¿ de Schreier est d�e�ni par rapport �a un sous-
groupe H. Ces sommets sont les classes Hg, g ∈ G, et ces arr�etes
sont les couples de la forme (Hg,Hgs) pour g ∈ G, s ∈ S.

2. Un graphe d'action de Schreier est d�e�ni par rapport �a une action
transitive �a droite de G, soit sur X. L'ensemble de sommets est X,
et les arr�etes sont les couples de la forme (x, xs) pour x ∈ X, s ∈ S.

3. L'ensemble de graphes de coset de Schreier et les graphes d'action
de Schreier sont les m�emes. On appelle un tel graphe un graphe de
Schreier.

Il y a une application �evidente des graphes de coset de Schreier avec
un sommet marqu�e vers les graphes d'action de Schreier avec un sommet
marqu�e. Il su�t de consid�erer l'action de G sur les classes de H par mul-
tiplication (�a droite). Son inverse n'est pas compliqu�e non plus : il su�t
de consid�erer le sous-groupe des �el�ements qui �xent le sommet marqu�e o,
dit stabilisateur et not�e St(o).

Les graphes de Schreier g�en�eralisent les graphes de Cayley. E�ective-
ment, le graphe de Cayley d'un groupe G est juste le graphe de Schreier
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par rapport au sous-groupe trivial {e}, o�u par rapport �a l'action du groupe
sur lui-m�eme par multiplication.

Il est connu que chaque graphe r�egulier de degr�e paire est un graphe
de Schreier [Gro77]. Pour une preuve d�etaill�ee du cas in�ni, voir [Lee16,
Theorem 3.2.5]. Ce n'est pas le cas pour les graphes de Cayley. Comme
on verra dans la Section 2.3.1, les graphes de croissance nd o�u d n'est pas
entier ne sont pas des graphes da Cayley.

2.2.2 Bouts des graphes

D�e�nition 22. Consid�erons une espace topologique X. Pour un en-
semble compact K ⊂ X on d�enote π0(X \K) l'ensemble des composantes
connexes de X \ K. Il y a un ordre naturelle d�e�ni par K1 ≤ K2 si et
seulement si K1 ⊆ K2. On en obtient un morphisme π1,2 : π0(X \K2) 7→
π0(X \K1) qui envoi chaque composante connexe dans une composante
connexe qui la contient. Cela forme une syst�eme inverse index�e parK ⊂ X
(voir [RS09, Section 3.1.2]). L'espace des bouts est la limite inverse :

lim←−
K⊂X
compact

π0(X \K) = {(xK) ∈
∏
K⊂X
compact

π0(X \K)|πα,βxβ = xα, Kα ⊂ Kβ}.

Dans le cas d'un graphe, de fa�con �equivalent, si on prends une suite
exhaustive croissante pour l'inclusion d'ensembles �nis K1 ⊂ K2 ⊂ . . . ,
un bout est repr�esent�e par une suite d�ecroissante U1 ⊇ U2 ⊇ . . . de
composantes connexes de X \Ki.

Par exemple, dans un arbre l'ensemble des bouts est repr�esentable par
les branches in�nies. Les graphes de Cayley de Z et F2 sont des arbres,
et ils ont donc deux bouts et un nombre in�ni de bouts respectivement.
Par contre, consid�erons le graphe de Cayley Zd pour d ≥ 2. Pour chaque
K �ni, Zd \K a exactement une composante connexe in�ni. Ce graphe a
donc un seul bout.

Dans le cas des graphes de Cayley, le nombre de bouts est bien classi��e
par Stallings [Sta68, Sta72] (voir [Geo08, Sections 13.5 et 13.6]). Il �etait
connu avant lui que le nombre des bouts est 0, 1, 2 ou∞, et que les groupes
avec 0 bouts sont les groupes �nis, et les groupes avec 2 bouts sont les
groupes virtuellement Z. Il d�emontre qu'un groupe a un nombre in�ni de
bouts si et seulement s'il peut �etre �ecrit comme produit libre amalgam�e
ou comme une extension HNN sur un groupe �ni.

2.2.3 Exemples

Le groupe de la Basilique

Notons T l'arbre in�ni binaire. Ses sommets sont les suites �nies de
{0, 1}, la suite vide �etant la racine. On consid�ere des automorphismes sur
lui. Comme ils pr�eservent la racine (car il est le seul sommet de degr�e 2),
ils pr�eservent - et donc permutent - chaque niveau. Un automorphisme est
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111110111100111

Figure 2.2 � Le graphe de Schreier �a niveau 5 du groupe de la Basilique et son
espace limite par Bondarenko, D'Angeli et Nagnibeda

donc d�e�ni de fa�con unique par le choix, sur chaque sommet, de permuter
ou non les deux �ls. Un sous-groupe de Aut(T ) est appel�e un groupe
agissant sur un arbre enracin�e binaire. On s'int�eressera �a un tel groupe,
le groupe de la Basilique. Il est d�e�ni comme le groupe engendr�e par deux
�el�ements a et b d�e�nis par r�ecurrence sur le longueur k de la suite :

{
a(0, j2, . . . , jk) = (0, j2, . . . , jk)

a(1, j2, . . . , jk) = (1, b(j2, . . . , jk))

{
b(0, j2, . . . , jk) = (1, a(j2, . . . , jk))

b(1, j2, . . . , jk) = (0, j2, . . . , jk)

Il est aussi le groupe des monodromies it�er�ees du polyn�ome z2−1 (voir
le survol par Bartholdi, Grigorchuk et Nekrashevych [BGN03] ; livre de
Nekrashevych [Nek05, Chapitres 3 et 5]) ; les graphes de Schreier induits
au niveau n convergent, quitte �a normaliser la distance, vers l'ensemble de
Julia du polyn�ome. Le groupe doit son nom �a cet ensemble : il ressemble
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la Basilique de San Marco �a Venise. Une visualisation de Bondarenko,
D'Angeli et Nagnibeda [BDN17] est pr�esent�e dans Figure 2.2.

Le groupe D∞ oa Z2

On pr�esente ici un exemple auquel on s'int�eresse dans [3] (voir Cha-
pitre 5). On commence par d�e�nir une g�en�eralisation du produit en cou-
ronne (voir Section 2.1.6) :

D�e�nition 23. Consid�erons un groupe A qui agit sur un ensemble X.
Notons cette action a. Le produit en couronne permutationnel (res-

treint) A oaB est le produit semi-direct de A sur B(X) o�u A agit sur B(X)

par translation.

Remarquons qu'un produit en couronne est un produit en couronne
permutationnel pour l'action du groupe sur lui m�eme par multiplication.

Consid�erons le groupe di�edral in�ni D∞, d�e�ni par

D∞ = 〈a, x|x2 = e, xax = a−1〉.

De fa�con �equivalent, il est le produit semi-direct de Z2 = Z/2Z sur Z,
avec l'�el�ement non-neutre de Z2 agissant en tant que l'inversion sur Z.
Tout �el�ement s'�ecrit soit an, soit xan. On consid�ere un autre ensemble
g�en�erateur : {x, y} avec

y = xa.

Alors xax = a−1 devient (xa)2 = e et donc D∞ est aussi le produit libre
de Z2 avec lui-m�eme.

1 2 3

-1 -2 -3

0 . . .

Figure 2.3 � (Une partie du) Graphe de Schreier de D∞ pour le sous-groupe
{e, x} avec x (pointill�ee, noire), y (bleue) et a (�ne, rouge). On va consid�erer
l'ensemble g�en�erateur {x, y} (sans les lignes rouges)

Consid�erons le sous-groupe {e, x} et le graphe de Schreier de coset
qu'il d�e�nit (avec ensemble g�en�erateur {x, y}). Chaque sommet est de
la forme {g, xg}, et il peut donc s'�ecrire comme {xan, an} pour un n ∈
Z. Si on repr�esente les sommets avec ces entiers, le graphe est dessin�e
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dans la Figure 2.3. Avec l'ensemble g�en�erateur {x, y}, il est un rayon :
0, 1,−1, 2,−2, 3,−3, . . . .

On s'int�eressera �a l'action a deD∞ que cela d�e�nit (voir D�e�nition 21),
et le produit en couronne permutationnel D∞ oa Z2 qu'on y obtient. On
expliquera dans la Section 2.3.5 que cela donne un exemple o�u la fonction
de Følner est similaire �a la fonction de croissance.

2.3 Pro�les g�eom�etriques

2.3.1 Croissance des groupes

Pour un groupe G de type �ni, et un ensemble S �ni g�en�erateur, on
d�enote V (k) = V (G,S, k) la taille de la boule autour de l'identit�e dans

le graphe de Cayley associ�e. On d�enote ω(G,S) = lim supk
k
√
V (G,S, k).

Si ω(G,S) > 1, on dit que G est de croissance exponentielle (remar-
quons que cela ne d�epend pas du choix de S �ni ; par contre le valeur
exact de ω(G,S) si). Si V (G,S, k) est major�ee par un polyn�ome, on dit
que G est de croissance polynomiale. Sinon, si V cro��t plus vite que
chaque polyn�ome mais plus lentement que chaque exponentielle, on dit
que le groupe est de croissance interm�ediaire. Il n'est pas �evident de
construire un tel groupe. On exprimera un exemple dans la prochaine
Section 2.3.2.

Les groupes de croissance polynomiale sont bien classi��es par un r�esultat
c�el�ebre de Gromov [Gro81]. Il obtient qu'ils sont exactement les groupes
virtuellement nilpotents. En particulier, leur croissance v�eri�e que V (n)n−d

converge pour l'entier d =
∑

i≥1 i rang(Gi/Gi+1) o�u (Gi) est la suite cen-

trale descendante. Voir Bass [Bas72], Guivarc'h [Gui73] pour V (n) entre
C1n

d et C2n
d et Pansu [Pan83a] pour la convergence.

Si un groupe n'est pas de croissance exponentielle, on peut montrer
qu'une sous-suite de boules autour de l'identit�e forme des ensembles
de Følner. En e�et, si ω(G,S) < 1 + ε, alors �a partir d'un certain k,
V (G,S, k) < (1 + ε)k. Cela implique que l'on peut en extraire une sous-
suite de boules telle que le bord est toujours plus petit que ε fois l'int�erieur.
En proc�edant par extraction diagonale, on obtient le r�esultat. Il est donc
moyennable. Par contre, l'inverse n'est pas vrai. Consid�erons par exemple
le produit en couronne Z o Z2 (o�u Z2 = Z/2Z). Il n'est pas di�cile de
voir que les �el�ements (1, 0) et (1, δ1

0) (avec les notations de Section 2.1.6)
forment un sous-semi-groupe libre. La croissance de Z o Z2 est donc au
moins 2n pour un ensemble g�en�erateur qui les contient. On a donc une
croissance exponentielle. Par contre il est moyennable, et m�eme r�esoluble.
Comme on a vu dans la Section 2.1.6, un exemple d'ensembles de Følner
pour ce groupe est l'ensemble Fn des (k, f) tels que supp(f) ⊂ [[1 . . . n]]

et k ∈ [[1 . . . n]]. Ils v�eri�ent |∂Fn|
|Fn| = 2

n . La question suivante reste ouverte.

Peut-on choisir pour chaque groupe moyennable certaines boules comme
ensembles de Følner ? Si l'on sait que la croissance est interm�ediaire ou
polynomiale, c'est vrai, mais dans ce cas la question se pose de savoir si
on peut choisir toutes les boules comme des ensembles de Følner.
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2.3.2 Groupe de Grigorchuk

Pour plus de r�ef�erences sur cette section, voir le livre de Pierre de
la Harpe [dlH00, Ch. VIII]. On rappelle quelques d�e�nitions de la Sec-
tion 2.2.3. Notons T l'arbre in�ni binaire. Ses sommets sont les suites
�nies de {0, 1}, la suite vide �etant la racine. On consid�ere des automor-
phismes sur lui. Comme ils pr�eservent la racine (car il est le seul sommet
de degr�e 2), ils pr�eservent - et donc permutent - chaque niveau. Un au-
tomorphisme est donc d�e�ni de fa�con unique par le choix, sur chaque
sommet, de permuter ou non ses deux �ls. Notons a l'automorphisme qui
permute les deux branches principales et rien d'autre. Autrement dit,

a(j1, j2, . . . , jk) = (j̄1, j2, j3, . . . , jk)

o�u j̄ = 1− j. On d�e�nit aussi b, c et d par r�ecurrence. L'automorphisme b
va agir comme a sur le sous-arbre �a gauche (celui dont les sommets sont
de la forme (0, j2, j3, . . . , jk)) et comme c �a droite. De m�eme, c = (a, d),
mais d = (1, b). Formellement :{

b(0, j2, j3, . . . , jk) = (0, j̄2, j3, . . . , jk)

b(1, j2, j3, . . . , jk) = (1, c(j2, j3, . . . , jk)){
c(0, j2, j3, . . . , jk) = (0, j̄2, j3, . . . , jk)

c(1, j2, j3, . . . , jk) = (1, d(j2, j3, . . . , jk)){
d(0, j2, j3, . . . , jk) = (0, j2, j3, . . . , jk)

d(1, j2, j3, . . . , jk) = (1, b(j2, j3, . . . , jk)).

Le groupe de Grigorchuk (ou premi�ere groupe de Grigorchuk) est
alors Γ = 〈a, b, c, d〉 (le sous-groupe de Aut(T ) engendr�e par ces quatre
�el�ements). Notons qu'on a a2 = b2 = c2 = d2 = 1 et aussi bc = cb = d.
Cela veut dire que pour chaque mot sur a, b, c, d qui est de longueur
minimale pour l'�el�ement du groupe qu'elle repr�esente, elle est de la forme
ax1ax2 . . . xka, ax1 . . . xk, x1a . . . xka ou x1a . . . xk pour x1, . . . , xk parmi
b, c, d. Notons StΓ(k) le sous-groupe qui �xe les k premiers niveaux. Il
agit s�epar�ement sur chaque sous-arbre d�e�ni en prenant un sommet de
profondeur k comme racine. On peut v�eri�er que la restriction donne aussi
un �el�ement de Γ. On a donc des morphismes naturels StΓ(k) 7→ Γ2k

.
Consid�erons en particulier StΓ(3). D'apr�es les d�e�nitions on peut voir
que pour chaque �el�ement parmi b, c, d, on peut trouver une branche sur
laquelle cet �el�ement agit trivialement jusqu'�a cette profondeur. On peut
utiliser cela et l'�ecriture ci-dessus pour d�emontrer :

Lemme 24. Consid�erons γ ∈ StΓ(3) et soient γ1, . . . , γ8 les restrictions
de γ sur les sous-arbres. On a donc :

8∑
i=1

|γi| ≤
3

4
|γ|+ 8.
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On sait que, pour tout ε > 0, V (k) = V (Γ, {a, b, c, d}, k) ≤ (ω(Γ, {a, b, c, d})+
ε)k �a partir d'un certain rang (par d�e�nition de limite sup�erieure). Si
on applique �a cela ce Lemme 24 et le fait que StΓ(3) est d'indice 27

(voir [dlH00, VIII.22]), on obtient

V (k) ≤ DP (k)(ω + ε)
3

4
(k+27−1)+8

pour une constante D et un polyn�ome P . Cela implique que ω ≤ (ω+ε)
3

4 .
On a donc ω(Γ, {a, b, c, d}) = 1 et le groupe de Grigorchuk n'est pas de
croissance exponentielle (il est donc moyennable). On peut montrer aussi
qu'il n'est pas de croissance polynomiale [dlH00, VIII.63]. Il est le premier
tel exemple. Cela ne r�esout pas encore la question sur la classi�cation des
croissances : il reste ouvert le Growth Gap Conjecture [Gri14, Conjec-
ture 2], qui conjecture que la croissance en volume doit �etre soit polyno-
miale, soit plus grande que exp(

√
n). Plus g�en�eralement, la version faible

de cette conjecture est qu'il existe un 0 < β < 1 tel que la croissance en
volume doit �etre soit polynomiale, soit plus grande que exp(nβ).

On peut aussi montrer que ce groupe est de torsion, mais pas de torsion
�ni : plus pr�ecis�ement, pour chaque γ ∈ Γ il existe N tel que γ2N

= 1,
mais pour chaque n il existe γ tel que γ2n 6= 1.

2.3.3 D�e�nition de la fonction de Følner

Fixons un groupeGmoyennable de type �ni et un ensemble g�en�erateur
S et soit Γ son graphe de Cayley. Rappelons la condition de Følner :
Th�eor�eme 6(3). On rappelle que pour un groupe de type �ni, on peut
consid�ererE comme n'importe quel ensemble g�en�erateur �x�e. On s'int�eressera
en particulier �a E = S

⋃
S−1

⋃{Id}. Alors pour un ensemble F , F.E4F
est l'ensemble des �el�ements g qui ne sont pas dans F mais pour lesquels
il existe un s = s(g) ∈ S tel que s.g o�u s−1.g est dans F . Autrement
dit, ce sont les �el�ements dans le compl�ementaire de F qui sont �a distance
1 de F dans Γ. On appellera cet ensemble ∂outF (d�e�nition valable de
fa�con g�en�erale pour tout graphe). Similairement, ∂inF sera l'ensemble des
�el�ements de F �a distance 1 de l'ext�erieur. Finalement, ∂F est l'ensemble
d'arr�etes entre F et son compl�ementaire. La fonction de Følner est alors :

Føl(n) = min

{
|F | : F ⊂ G, |∂inF ||F | ≤

1

n

}
. (2.1)

Remarquons que Føl(1) = 1 pour tout groupe et tout ensemble g�en�erateur.

2.3.4 Quasi-isom�etries et �equivalence asymptotique

Soient X et X ′ deux espaces m�etriques. Une fonction φ : X 7→ X ′ est
appel�ee un plongement quasi-isom�etrique s'il existe des constantes
λ ≥ 1 et C ≥ 0 telles que pour tout x, y :

1

λ
d(x, y)− C ≤ d′(φ(x), φ(y)) ≤ λd(x, y) + C.
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C'est une quasi-isom�etrie si de plus il existe D ≥ 0 tel que chaque
point de X ′ est �a distance plus petite que D d'un point de φ(X). On le
consid�ere dans le cas des groupes de type �ni avec la m�etrique de longueur
de mots.

Proposition 25. Soit G un groupe de type �ni et S et S′ deux ensembles
g�en�erateurs. Alors G avec la m�etrique de longueur de mots sur S est
quasi-isom�etrique �a G avec la m�etrique de longueur de mots sur S′.

On a donc une notion de quasi-isom�etrie de groupes bien d�e�nie pour
les groupes de type �ni. Les propri�et�es pr�eserv�ees par quasi-isom�etrie sont
consid�er�ees comme des propri�et�es g�eom�etriques. La moyennabilit�e en est
une. Une fa�con simple de voir cela est d'utiliser la condition de Følner.

Il existe plusieurs propri�et�es pour lesquelles on ne sait pas si elles sont
g�eom�etriques. Par exemple, on ne sait pas si deux groupes, l'un avec un
sous-groupe libre et l'autre sans, peuvent �etre quasi-isom�etriques. �Etre
de torsion aussi, on ne sait pas si cette propri�et�e est pr�eserv�e par quasi-
isom�etrie.

Le type de croissance (comme d�e�ni dans la Section 2.3.1) est pr�eserv�e
par quasi-isom�etries. Par rapport aux fonctions de Følner, les quasi-
isom�etries les pr�eservent �a �equivalence asymptotique pr�es. Deux fonc-
tions sont asymptotiquement �equivalentes s'il existe des constantes A et
B tels que f(x/A)/B < g(X) < f(xA)B. L'approche standard pour
d�ecrire la fonction de Følner d'un groupe est ainsi de donner sa classe
d'�equivalence asymptotique. Il vaut de noter aussi que la classe d'�equivalence
asymptotique de la probabilit�e de retour apr�es 2n pas est pr�eserv�e par
quasi-isom�etrie pour les graphes de Cayley (voir Pittet et Salo�-Coste [PSC00]).

2.3.5 Fonctions de Følner

Comme on l'a mentionn�e dans la Section 2.3.4, g�en�eralement, on cherche
�a classi�er les fonctions de Følner �a �equivalence asymptotique pr�es. Le
Th�eor�eme isop�erim�etrique classique dit que le compact dans Rn qui mi-
nimise le bord pour un volume �x�e est la boule (voir le survol d'Osser-
man [Oss78, Section 2]). Car Zn est quasi-isom�etrique �a Rn, cela est aussi
un premi�ere r�esultat pour les groupes discrets. Le fait que si un minimum
existe, il est r�ealis�e uniquement sur la boule est obtenu (dans R2) par Stei-
ner au XIXe si�ecle, en utilisant ce qui est maintenant appel�e sym�etrisation
de Steiner (voir Hehl [Heh13], Hopf [Hop40], Froehlich [Fro09]). L'exis-
tence du minimum est prouv�e, dans R3, par Schwarz [Sch84]. Varopou-
los [Var85b] d�emontre plus g�en�eralement une in�egalit�e isop�erim�etrique
pour les produits directs. Pansu [Pan83b] (voir aussi [Pan82]) en obtient
dans le groupe de Heisenberg H3. Un r�esultat central est l'in�egalit�e de
Coulhon et Salo�-Coste [CSC93], qui relie la croissance en volume et la
fonction de Følner :

Th�eor�eme 26 (In�egalit�e de Coulhon et Salo�-Coste). Soit G un groupe
in�ni engendr�e par un ensemble S �ni et soit φ(λ) = min(n|V (n) > λ),
o�u V (n) est la taille de la balle de rayon n dans le graphe de Cayley. Alors
pour tout ensemble F �ni on a
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|∂inF |
|F | ≥

1

8|S|φ(2|F |) .

Les constantes multiplicatives peuvent �etre am�elior�ees (voir G. Pete [Pet20,
Theorem 5.11], B. L. Santos Correia [SC20]) :

|∂inF |
|F | ≥

1

2φ(2|F |) . (2.2)

Le r�esultat de Santos Correia est annonc�e �egalement pour les groupes
�nis pour |F | ≤ 1

2 |G|. L'in�egalit�e de Coulhon et Salo�-Coste (Th�eor�eme 26)
implique en particulier que pour un groupe de croissance exponentielle, sa
fonction de Følner est au moins exponentielle. Similairement, il est connu
que les fonctions de Følner des groupes de croissances polynomiales sont
au plus polynomiales (voir par exemple [Woe00, Section I.4.C]). Une autre

in�egalit�e sur l'isop�erim�etrie des groupes est donn�e par 
Zuk [ 
Zuk00]. Ver-
shik [Ver73] demande si la fonction de Følner peut �etre super-exponentielle,
ce qui marque le d�ebut de l'�etude des fonctions de Følner. Il sugg�ere le
produit en couronne Z oZ comme un exemple �a consid�erer. Pittet [Pit95]
montre que les fonctions de Følner des groupes polycycliques sont au plus
exponentielles (elles sont donc exponentielles pour les groupes polycy-
cliques de croissance exponentielle). Cela est plus g�en�eralement vrai pour
les groupes r�esolubles avec rang de Pr�ufer �ni, voir [PSC03] et [KL20]. Le
premier exemple de groupe avec fonction de Følner super-exponentielle
est obtenu par Pittet et Salo�-Coste [PSC99] pour Zd o Z/2Z. Plus tard
les fonctions de Følner des produits en couronnes avec certains conditions
de r�egularit�e sur les groupes de base sont d�ecrites par Erschler [Ers03] �a
�equivalence asymptotique pr�et. Sp�eci�quement, on d�enote qu'une fonc-
tion f v�eri�e la propri�et�e (∗) si pour tout C > 0 il existe k > 0 tel que
f(kn) > Cf(n). Son r�esultat dit alors que pour deux groupes dont les
fonctions de Følner v�eri�ent cette propri�et�e, la fonction de Følner de leur
produit en couronne A oB est FølAoB(n) = FølB(n)FølA(n).

Une direction d'�etudes des fonctions de Følner cherche �a d�ecrire la
classe de fonctions f pour lesquelles il existe un groupe dont la fonc-
tion de Følner est asymptotiquement �equivalente �a f . Plusieurs auteurs
ont trouv�e des conditions de plus en plus faibles. Gromov [Gro08, Sec-
tion 8.2, Remark (b)] construit des groupes avec des fonctions de Følner
prescrits pour toutes les fonctions dont des d�eriv�ees croissent assez vite.
Salo�-Coste et Zheng [SCZ18] d�ecrivent les fonctions de Følner, entre
autres, d'une classe des ¾bubble¿ groupes et d'une classe de groupes cy-
cliques de Neumann-Segal. Plus r�ecemment, Brieussel et Zheng [BZ21]
d�emontrent que pour toute f croissante avec f(1) = 1 et n/f(n) crois-
sante, il existe un groupe dont la fonction de Følner est asymptotiquement
�equivalente �a l'exponentielle de la fonction inverse de n/f(n). Erschler et
Zheng [EZ21] obtient des exemples pour une classe de fonctions super-
exponentielles en dessous de exp(n2) avec des conditions de r�egularit�e
plus faibles. Sp�eci�quement, pour tout d ∈ N et τ(n) ≤ nd largement
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croissante elles obtiennent qu'il existe un groupe G et une constante C
avec

Cn exp(n+ τ(n)) ≥ FølG(n) ≥ exp(
1

C
(n+ τ(n/C))). (2.3)

La cot�e gauche est toujours asymptotiquement �equivalente �a exp(n+
τ(n)), et il su�t donc que la cot�e droite le soit aussi pour d�ecrire la fonc-
tion de Følner de G. En particulier, il su�rait que τ v�eri�e (∗). Remar-
quons que les conditions d�ecrites ici ne consid�erent que les fonctions plus
grandes que exp(n) ; c'est une question ouverte de savoir si une fonction
de Følner peut avoir croissance interm�ediaire (voir Grigorchuk [Gri14,
Conjecture 5(ii)]). Par Erschler [Ers06, Lemme 3.1], une r�eponse n�egative
impliquerait le Growth Gap Conjecture. On peut d�e�nir une version faible
de la conjecture pour les fonctions de Følner de fa�con similaire �a la forme
faible du Growth Gap Conjecture. Les versions faibles sont �equivalentes
(voir la discussion apr�es Conjecture 6 dans [Gri14]).

On connait encore moins les descriptions exactes des fonctions de
Følner. Dans un travail en cours [3] (voir Chapitre 5) on obtient des
valeurs exactes pour les fonctions de Følner du produit en couronne
(voir Section 2.1.6) Z o Z2 pour deux ensembles g�en�erateurs (on d�enote
Z2 = Z/2Z), et des r�esultats isop�erim�etriques sur le groupe de Baumslag-
Solitar BS(1, 2). Des connaissances de l'auteur, ce sont les premi�eres
exemples o�u les valeurs exactes d'une fonction de Følner non-polynomiale
sont connues. On rappelle que les ensembles de Følner standards Fn
sur Z o Z2 sont Fn = {(k, f)|k ∈ [[1, n]], supp(f) ⊂ [[1, n]]}. On d�enote
t = (1, 0) et δ = (0, δ1

0). Les deux ensembles g�en�erateurs qu'on consid�era
ici sont l'ensemble standard S = {t, δ} et l'ensemble ¾switch-walk-switch¿
S′ = {t, δ, tδ, δt, δtδ}.
D�e�nition 27. On dira qu'un sous-ensemble F �ni d'un groupe G est
optimal par rapport au bord int�erieur (respectivement ext�erieur, par
rapport aux arr�etes) si pour tout F ′ avec |F ′| ≤ |F |, on a

|∂inF ′|
|F ′| ≥

|∂inF |
|F |

(respectivement |∂outF ′|
|F ′| ≥ |∂outF |

|F | , |∂F
′|

|F ′| ≥
|∂F |
|F | ), et si |F ′| < |F |, les

in�egalit�es sont strictes.

On obtient alors :

Th�eor�eme F. Consid�erons le produit en couronne Z o Z2.

1. Pour tout n ∈ N, l'ensemble de Følner standard Fn est optimal
par rapport au bord ext�erieur et le bord par rapport aux arr�etes
pour l'ensemble g�en�erateur standard S. Autrement dit, pour tout
F ⊂ Z o Z2 tel que |F | ≤ |Fn|, on a

|∂F |
|F | ≥

|∂outF |
|F | ≥ |∂outFn||Fn|

=
|∂Fn|
|Fn|

,

et si |F | < |Fn|, les in�egalit�es sont strictes,
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2. Pour tout n ∈ N on a

(a) Pour S, Fn
⋃
∂outFn est optimal par rapport au bord int�erieur,

(b) Pour S′, Fn
⋃
∂′outFn est optimal par rapport au bord int�erieur,

3. Les r�esultats de (2) impliquent que, pour n ≥ 2, la fonction de
Følner sur Z o Z2 pour l'ensemble g�en�erateur standard est

Føl(n) = 2n22(n−1)

et pour l'ensemble ¾switch-walk-switch¿ elle est

Følsws(n) = 2n22n.

De plus les ensembles qui donnent l'�egalit�e sont uniques �a translation
pr�et. Remarquons que le point (3) est le Th�eor�eme D.

On substitue ces valeurs dans l'in�egalit�e de Coulhon et Salo�-Coste
pour �etudier les constantes multiplicatives. L'in�egalit�e 2.2 implique (pour
toute groupe in�ni et toute ensemble g�en�erateur �ni) :

2 Føl(n) > V (
n

2
− 1).

Pour les groupes de croissance exponentielle, il n'est pas di�cile de
voir que la constante multiplicative devant n est plus importante que les
autres constantes. E�ectivement, si on obtient AFøl(n) ≥ V (n(1

2 +ε)−B)
pour certains ε,A,B > 0, ce r�esultat est strictement plus fort pour n assez
grand. On peut donc demander :

Question. Pour un groupe G et un ensemble g�en�erateur S, on d�enote
CG,S le supremum de l'ensemble des constances C tels qu'ils existent A
et B avec AFøl(n) ≥ V (Cn − B). Quel est l'in�mum C0 de l'ensemble
de tout CG,S sur tout groupe et tout ensemble g�en�erateur �ni ?

L'in�egalit�e originale donne une r�eponse positive pour C = 1
8|S| (et

donc C0 ≥ 1
8|S|), et les r�esultats de [Pet20, Theorem 5.11] et [SC20] qu'on

a cit�e en tant qu'�Equation 2.2 montrent que C0 ≥ 1
2 .

Il n'est pas di�cile de voir que si les limites lim ln Føl(n)
n et lim lnV (n)

n
existent pour un groupe et un ensemble g�en�erateur, le supremum CG,S
sera leur quotient. La deuxi�eme limite existe toujours. Chaque �el�ement
de longueur au plus mn s'�ecrit comme le produit de deux �el�ements de
longueur respectivement au plus m et au plus n. On a donc

V (m+ n) ≤ V (m)V (n),

et lnV (n) est sous-additive. La limite existe alors par le lemme sous-

additif de Fekete. Par contre, l'autre limite lim ln Føl(n)
n peut ne pas exister.

Un exemple trivial vient des groupes avec fonctions de Følner super-
exponentielles, o�u la suite diverge vers +∞. Mais m�eme si on d�ecide
de consid�erer cela comme une suite convergente (vers +∞), la limite
n'est encore pas toujours existant. On peut consid�erer des exemples de

25



Erschler et Zheng o�u la fonction de Følner oscille entre expn et expnc.

Alors ln Føl(n)
n oscille entre une constante �nie et +∞. Sp�eci�quement,

consid�erons [EZ21, Example 3.8(2)] avec α = 1 et β = 2. Prenons une
suite (ηi) et une fonction τ(n) = nα pour n ∈ [η2j−1, η2j ] et τ(n) = nβ

pour n ∈ [η2j , η2j+1]. L'exemple nous donne un groupe dont la fonction de

Følner v�eri�e In�egalit�e 2.3. Pour n ∈ [η2j−1, η2j ] on a ln Føl(n)
n ≤ ln(Cn)

n +

1+ τ(n)
n , qui est plus petit que 3 pour n grand. En autre, si n ∈ [η2j , η2j+1],

ln Føl(n)
n ≥ 1

Cn(n+τ(n/C)) = 1
C + n

C3 . En particulier, il est plus grand que

4 pour n grand. On a donc que ln Føl(n)
n ne converge pas vers une constante

�nie, et ne diverge pas vers +∞. On peut quand m�eme consid�erer lim inf.

Proposition G. CG,S =
lim inf ln Føl(n)

n

lim ln V (n)

n

.

D'apr�es le Th�eor�eme D, sur Z oZ2 on a (voir [3, Section 5] ; Chapitre 5
pour les estimations sur le volume) :

Proposition H. Le produit en couronne Z o Z2 v�eri�e

CZoZ2,S =
lim ln Føl(n)

n

lim lnV (n)
n

=
ln 4

ln(1
2(1 +

√
5))
≈ 2, 88

pour l'ensemble g�en�erateur standard, et

CZoZ2,S′ =
lim ln Følsws(n)

n

lim lnVsws(n)
n

= 2.

On obtient une borne sup�erieure C0 ≤ 2. Cette borne �etait d�ej�a
connu avant de montrer que les ensembles standards sont optimaux ;
Th�eor�eme D d�emontre que ces exemples ne peuvent pas donner mieux.
Par contre, on d�emontre dans [3] (voir Chapitre 5) que C0 ≤ 1.

Proposition I. Le produit en couronne permutationnel D∞ oaZ2 (qu'on a
d�ecrit dans Section 2.2.3) avec l'ensemble g�en�erateur {tx, ty, δ, txδ, δtx, δtxδ, tyδ, δty, δtyδ}
v�eri�e

lim inf ln Føl(n)

n

lim ln V (n)

n

= 1.

Sp�eci�quement, on obtient Føl(2n+1) = 2(2n+1)22n+1 et lim ln Føl(n)
n =

ln 2. Cela vient du fait que dans les ensembles standards, le support des
fonctions est contenu dans un intervalle d'un rayon (le rayon qu'on voit
sur la Figure 2.3 sur page 18), et (s'il est bien choisi) le bord du support
est donc de cardinal 1.

Une voie de recherche connue est l'�etude de la s�erie de croissance∑
n V (n)xn, sp�eci�quement si elle est une fonction rationnelle. Une r�eponse

positive est obtenu pour les groupes hyperboliques pour tout ensemble
g�en�erateur par Gromov [Gro87] (voir aussi [Can84],[GdlH90, Chapitre 9]),
et par Benson [Ben83] pour les groupes virtuellement ab�eliens. Une condi-
tion su�sante qu'on remarque est d'avoir un "nombre �ni de types co-
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niques". Passant des groupes virtuellement ab�eliens vers les groupes nil-
potents, Benson [Ben87] et Shapiro [Sha89] montrent que la s�erie de crois-
sance du groupe de Heisenberg sur les entiers H3 est rationnelle pour l'en-
semble g�en�erateur standard. Stoll [Sto96] �etudie le groupe de Heisenberg
H5 de dimension plus grande et obtient que la s�erie n'est pas ration-
nelle pour l'ensemble standard, mais elle l'est pour un autre ensemble
g�en�erateur. Duchin et Shapiro [DS19] obtiennent plus tard la rationalit�e
surH3 pour tout ensemble g�en�erateur. Voir Grigorchuk-de la Harpe [GdlH97,
Section 4] pour un survol. Avoir des valeurs exactes pour les fonctions de
Følner nous permet d'�etudier la s�erie

∑
n Føl(n)xn. Comme une coro-

laire de Th�eor�eme D, on obtient que les s�eries dans ces deux exemples
sont des fonctions rationnelles : respectivement 2x

(4x−1)2 et 8x
(4x−1)2 . Il serait

int�eressant de trouver une condition g�eom�etrique su�sante qui explique
cela.

On obtient de plus un r�esultat isop�erim�etrique sur le groupe de Baumslag-
Solitar BS(1, 2) en terme du bord par rapport aux ar�etes. Les groupes de
Baumslag-Solitar sont d�e�nis par la pr�esentationBS(m,n) = 〈a, b|bamb−1 =
an〉. Il est moyennable si et seulement s'il est r�esoluble, si et seulement si
|m| = 1 o�u |n| = 1. Le groupe BS(1, p) est isomorphe au groupe engendr�e
par x 7→ x + 1 et x 7→ px (qui seront respectivement l'image de a et de
b−1). On peut �ecrire ces �el�ements de la forme x 7→ pnx + f avec n ∈ Z
et f ∈ Z[1

p ]. Les g�en�erateurs agissent (�a droite) respectivement en rajou-

tant pn dans f ou en changeant n, ce qui pr�esente une structure similaire
aux produits en couronnes. Si on �ecrit cet �el�ement de la forme (n, f), les
ensembles standards s'expriment de la m�eme fa�con que pour les produits
en couronnes. Autrement dit,

Fn = {pkx+ f |k ∈ [[1, n]], f ∈ Z, 0 ≤ f < pn+1}. (2.4)

Th�eor�eme (Th�eor�eme E). Consid�erons le groupe de Baumslag-Solitar
BS(1, 2) avec l'ensemble g�en�erateur {a, b}. Alors pour tout n ∈ N et tout

F ⊂ BS(1, 2) �ni tel que |F | ≤ |Fn|, on a |∂F ||F | ≥
|∂Fn|
|Fn| , et si |F | < |Fn|,

l'in�egalit�e est stricte.

Dans le cas g�en�eral de BS(1, p), on montre que dans BS(1, 8), l'en-
semble standard avec 8 �el�ements n'est pas optimal. Par contre, ce r�esultat
est reli�e au fait que p n'est pas n�egligeable par rapport au longueur de
l'intervalle qui d�e�nit l'ensemble standard, et il est possible que pour
BS(1, p) aussi, les ensembles standards sont optimaux pour grands n.

2.4 Marches al�eatoires gouvern�ees par des me-

sures sur les groupes

2.4.1 D�e�nitions

Soit une mesure µ sur un groupe G. La marche al�eatoire associ�ee sur
G est la cha��ne de Markov gouvern�ee par la probabilit�e de transition
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p(f1, f2) = µ(f−1
1 f2). Autrement dit, p(f, fg) = µ(g). Intuitivement, �a

chaque pas on choisit un �el�ement g par µ et on multiplie (�a droite) la
position o�u on se trouve par g. Si on part de l'�el�ement neutre, cela donne
une trajectoire Tn = g1g2 . . . gn o�u gi sont ind�ependantes et identiquement
distribu�ees par µ. Remarquons que la trajectoire reste dans le semi-groupe
engendr�e par le support de µ. On dira qu'une mesure est non-d�eg�en�er�ee
si son support engendre G. Il vaut de noter qu'on aurait pu �egalement
multiplier �a gauche - c'est un choix de convention.

On d�e�nit la marche al�eatoire induite par une action de fa�con similaire.
Encore une fois, �a chaque pas on choisit un �el�ement g ∈ G par µ et on
multiplie par lui. On obtient p(x, y) =

∑
x.g=y µ(g), et la trajectoire est

Tn = o.g1g2 . . . gn. Noter qu'on a pris l'action �a droite.
On cherche �a comprendre le comportement limite de ces marches,

sp�eci�quement en terme de leurs bords de Poisson. Le bord de Poisson
(aussi dit de Poisson-Furstenberg) est d�e�ni de fa�con g�en�erale pour une
marche quelconque, et il y a plusieurs d�e�nitions �equivalentes (voir [KV83]).

D�e�nition 28. Consid�erons une marche al�eatoire et la mesure P induite
sur l'espace des trajectoires GZ+ . Consid�erons la relation d'�equivalence
suivante : (x0, x1, . . . ) ∼ (y0, y1, . . . ) si et seulement s'il existe i0 ∈ N et
k ∈ Z tels que pour tout i > i0, xi = yi+k. Autrement dit, deux tra-
jectoires sont �equivalentes quand elles sont les m�emes quitte �a supprimer
un nombre �ni (possiblement di��erent) de points au d�ebut. Le Bord de
Poisson de la marche est le quotient de (GZ+ , P ) par l'enveloppe mesu-
rable de cette relation d'�equivalence.

De fa�con �equivalente, le bord de Poisson B peut �etre d�e�ni comme
le µ-bord maximal, un µ-bord �etant un quotient de P par une partition
mesurable et invariante par rapport aux translations et par rapport aux
multiplication par les �el�ements de G.

Pour une marche sur une groupe, une formule dite formule de Pois-
son donne un isomorphisme entre L∞(B) et l'espace des fonctions µ-
harmoniques born�ees sur le groupe. Une fonction est µ-harmonique si
pour tout x, f(x) =

∑
g µ(g)f(xg). Cela permet de d�e�nir le bord de

Poisson aussi comme le spectre de l'alg�ebre de Banach que cet espace
forme avec le produit appropri�e. Une autre r�ealisation abstraite du bord
est en tant que l'espace des composantes ergodiques pour la translation.
Voir aussi les survols par Erschler [Ers10], Furman [Fur02].

Si le bord de Poisson n'admet que des ensembles de mesure 0 ou 1,
on dit qu'il est trivial. Quand le bord de la marche al�eatoire induite sur
un groupe G par une mesure µ sur G est trivial, on dit que (G,µ) est
Liouville. Remarquons que la formule de Poisson dit qu'une mesure est
Liouville si et seulement si les seules fonctions µ-harmoniques born�ees sur
G sont les fonctions constantes.

On a une d�e�nition similaire sur les graphes o�u on dit qu'un graphe Γ
v�eri�e la propri�et�e de Liouville si les seules fonctions harmoniques born�ees
sur Γ sont les fonctions constantes (pour un graphe de Cayley cela est
�equivalente au fait que la mesure de comptage normalis�e sur S ∪ S−1 est
Liouville). Cette propri�et�e n'est pas stable par quasi-isom�etrie d'apr�es un
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r�esultat de Lyons [Lyo87] : il d�ecrit deux graphes quasi-isomorphes o�u
l'un admet la propri�et�e de Liouville et l'autre non. Benjamini [Ben91]
obtient de plus un exemple qui v�eri�e ces conditions et pour lequel les
graphes sont de croissance polynomiale.

Pour une classe de mesures, on peut savoir si elles sont Liouville en
utilisant l'entropie de la marche. L'entropie d'une mesure est d�e�ni par

H(µ) =
∑
g∈G
−µ(g) logµ(g),

et celle de la marche associ�ee (dite entropie asymptotique, voir Avez [Ave72])
par

h(µ) = lim
n→∞

H(µ∗n)

n
.

On a H(µ ∗ λ) ≤ H(µ) + H(λ) et donc si H(µ) est �ni, cette limite
existe et h(µ) est �ni. Avez [Ave76] obtient que si h(µ) = 0, alors la mesure
est Liouville. Pour les mesures avec entropie �ni, l'inverse est aussi vrai :

Th�eor�eme 29 (Crit�ere d'entropie (Kaimanovich-Vershik [KV79, KV83],
Derriennic [Der80])). Soit G un groupe d�enombrable et µ une mesure sur
G avec entropie �nie. Alors (G,µ) est Liouville si et seulement si h(µ) =
0.

Pour les mesures de premier moment �ni, on peut relier l'entropie
�a la vitesse de fuite. Le premier moment d'une mesure est l'esp�erance
de la longueur de mot

∑
g∈G |g|µ(g). Il d�epende du choix d'ensemble

g�en�erateur, mais sa �nitude n'en d�epend pas. La vitesse de fuite est

lS(µ) = limn→∞
L(n)
n o�u L(n) =

∑
g∈G |g|µ∗n(g) (et S est un ensemble

g�en�erateur). Il n'est pas di�cile de voir que h ≤ ωl (voir [Gui80, Sec-
tion C]), et donc si l = 0, on a h = 0. Pour les mesures sym�etriques,
l'inverse est aussi vrai. Ceci est obtenu par Varopoulos [Var85a] pour les
mesures de support �ni, et par Karlsson et Ledrappier [KL07] pour les
mesures de premier moment �ni.

2.4.2 Liens avec la moyennabilit�e

Le bord de Poisson donne une autre crit�ere de moyennabilit�e :

Th�eor�eme 30. Un groupe G est moyennable si et seulement s'il existe
un mesure Liouville µ non-d�eg�en�er�ee sur G.

Le sens inverse est donn�e par Azencott [Aze70], voir aussi Fursten-
berg [Fur73] qui conjecture de plus le sens direct. Celui-ci est montr�e par
Rosenblatt [Ros81] et Kaimanovich-Vershik [KV79, KV83].

Il vaut de noter qu'un groupe peut avoir certaines mesures qui sont
Liouvilles et d'autres qui ne le sont pas. Kaimanovich et Vershik [KV83]
montrent que les mesures non-d�eg�en�er�es de support �ni sur Zd o Z2 pour
d ≥ 3 ne sont pas Liouville (et une mesure Liouville existe car le groupe
est moyennable). Pour les m�emes groupes, Kaimanovich [Kai85] montre

29



qu'il existe une mesure non-Liouville dont l'inverse est Liouville. Er-
schler [Ers04] obtient que l'entropie asymptotique des mesures non-d�eg�en�er�es
sur une classe de groupes qui contient les groupes Zd o Z2 pour d ≥ 3
n'est jamais nulle. En particulier, toute mesure avec entropie �nie n'est
pas Liouville, et l'entropie de la mesure Liouville qui existe d'apr�es le
Th�eor�eme 30 est in�nie.

La th�eor�eme d�ecrit la classe de groupes o�u il existe une mesure Liou-
ville - les groupes moyennables. Parmi eux ils existent de plus des groupes
o�u toute mesure est Liouville. Ceci est obtenu pour les groupes ab�eliens
par Blackwell [Bla55] (voir aussi [DSW60],[CD60]), puis pour les groupes
nilpotents [DM61],[Mar66], et ensuite les groupes hyper-FC-centraux [LZ98],[Jaw04].
Il vaut de noter qu'un groupe de type �ni est hyper-FC-central si et
seulement s'il est virtuellement nilpotent. Dans un r�esultat r�ecent, Frisch,
Hartman, Tamuz et Vahidi Ferdowsi [FHTV19] montrent que toutes les
mesures sur un groupe sont Liouville si et seulement si le groupe est hyper-
FC-central. En particulier, sur tout groupe de croissance sur-polynomiale
il existe une mesure non-Liouville. Cela �etait conjectur�e pour les groupes
de croissance exponentielle par Kaimanovich et Vershik [KV83]. Une des-
cription compl�ete du bord de Poisson est donn�e dans [EK19] pour une
classe de mesures contenant les mesures non-Liouvilles pr�esent�ees dans
[FHTV19] (sur les groupes qui ne sont pas hyper-FC-centraux).

Dans [1] (voir Chapitre 3) on s'int�eresse aux sous-groupes de H(Z)
(voir Section 2.1.5). Il n'est pas connu si ce groupe est moyennable ou
non, donc on ne sait pas s'il existe une mesure Liouville. On d�emontre
que certaines classes de mesures sur des sous-groupes de H(Z) ne sont
pas Liouville. Ces r�esultats sont inspir�es par les travaux de Vaidim Kai-
manovich sur le groupe de Thompson F (comme on a mentionn�e, H(Z)
contient F comme sous-groupe).

D�e�nition 31. Le groupe de Thompson F est le groupe des hom�eomorphismes
a�nes par morceaux de [0, 1] qui pr�eservent l'orientation, avec un nombre
�ni de morceaux, dont les extr�emit�es des morceaux sont dyadiques, et les
pentes sont des puissances de 2.

Il est de type �ni, avec deux g�en�erateurs :

A(t) =


t
2 0 ≤ t ≤ 1

2

t− 1
4

1
2 ≤ t ≤ 3

4

2t− 1 3
4 ≤ t ≤ 1

B(t) =


t 0 ≤ t ≤ 1

2
t
2 + 1

4
1
2 ≤ t ≤ 3

4

t− 1
8

3
4 ≤ t ≤ 7

8

2t− 1 7
8 ≤ t ≤ 1

C'est une question ouverte c�el�ebre de savoir s'il est moyennable ou non.
Vadim Kaimanovich [Kai17] d�emontre que les mesures de support �ni sur
F dont le support engendre F comme semi-groupe sont non-Liouvilles.
Dans [1] (voir Chapitre 3), on montre :

Th�eor�eme. Pour tout sous-groupe de type �ni H de H(Z) qui n'est pas
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r�esoluble et toute mesure µ sur H avec premier moment �ni et dont le
support engendre H comme semi-groupe, (H,µ) n'est pas Liouville.

En consid�erant une g�en�eralisation de la notion de premier moment �ni
sur des sous-groupes de H(Z) qui ne sont pas de type �ni, on obtient :

Th�eor�eme (Th�eor�eme A). Pour tout sous-groupe de H de H(Z) qui n'est
pas localement r�esoluble et toute mesure µ sur H avec esp�erance �nie du
nombre de �ns de morceaux et dont le support engendre H comme semi-
groupe, (H,µ) n'est pas Liouville.

Il s'en suit que les mesures avec premier moment �ni sur F , dont le
support engendre F comme semi-groupe, sont non-Liouville. Cela �etait
soulev�e comme question dans l'article de Kaimanovich [Kai17, 7.A]. Pour
les mesures de support �ni qu'il consid�ere, les con�gurations associ�ees
stabilisent (point par point) des que la marche transiente induite sur
les nombres dyadiques sort d'un ensemble �ni �x�e. Pour les mesures de
premi�ere moment �ni, le valeur peut changer tout au long de la trajectoire,
et on a du montrer (voir [1, Lemma 7.2] ; Chapitre 3) que l'esp�erance du
nombre de changements est �ni.

La condition de moyennabilit�e avec le bord de Poisson est n�ecessaire
et su�sante, mais �a mes connaissances, elle n'a pas �et�e utilis�ee pour
d�emontrer la non-moyennabilit�e d'un groupe. Dans l'autre direction par
contre, elle a �et�e utilis�ee pour montrer la moyennabilit�e d'un groupe.
Bartholdi et Vir�ag [BV05] d�emontrent que le groupe de la Basilique
(voir Section 2.2.3) est moyennable en montrant que l'esp�erance de la
distance �a l'origine augmente de fa�con sous-lin�eaire ; et puis en appli-
quant le crit�ere de Kesten. Dans un article inspir�e par leur m�ethode,
Kaimanovich [Kai05] d�emontre plus g�en�eralement que pour une classe de
groupes auto-similaires (qui contient le groupe de la Basilique), pour cer-
tains mesures l'entropie asymptotique est z�ero. Ils sont donc Liouvilles
(voir Th�eor�eme 29), et les groupes de cette classe sont moyennables.

2.4.3 Graphes de Schreier

On a aussi des r�esultats plus g�en�eraux sur les marches sur le graphe
de Schreier de F (voir D�e�nition 21). On rappelle que la marche al�eatoire
est d�e�nie par le noyau p(x, y) =

∑
x.g=y µ(g). Il n'est pas di�cile de

voir que le bord de Poisson de cette marche est un quotient du bord de
Poisson de la marche sur le groupe. En particulier, si le bord sur le graphe
de Schreier est non-trivial, la mesure n'est pas Liouville.

Mishchenko [Mis15] d�eveloppe une autre approche pour �etudier le non-
trivialit�e des bords de Poisson sur F . Il d�emontre que la marche al�eatoire
simple sur le graphe de Schreier que F induit sur les nombres dyadiques
a un bord de Poisson non-trivial. Kaimanovich [Kai17, Section 6] obtient
ce r�esultat pour les mesures de support �ni. Dans [2] (voir Chapitre 4)
on prouve que le bord de Poisson de la marche induite sur le graphe de
Schreier est non-trivial pour les mesures avec premier moment �ni dont
le support engendre F comme semi-groupe. C'est une cons�equence (d'un
corollaire) du r�esultat suivant :
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Th�eor�eme (Th�eor�eme B). Consid�erons une action transitive d'un groupe
G. Soit S un ensemble g�en�erateur et Γ le graphe de Schreier associ�e. Soit
µ une mesure sur G avec premier moment �ni tel que la marche al�eatoire
induite sur Γ est transiente. Alors elle converge presque surement vers un
bout (al�eatoire) du graphe.

Ce r�esultat �etait d�ej�a connu dans le cas o�u l'action de G sur X est
non-moyennable (voir Woess [Woe00, Th�eor�eme 21.16] - c'est un cas par-
ticuli�ere de ce th�eor�eme), encore avec la condition de premier moment �ni.
La th�eor�eme cit�e est plus g�en�eralement vrai pour une marche al�eatoire qui
n'est pas n�ecessairement induite par une mesure sur un groupe. Elle sup-
pose plut�ot une marche uniform�ement irr�eductible, de premier moment
uniforme, et avec ρ < 1 (on rappelle le Crit�ere de Kesten dans la Propo-
sition 7). Dans [2] (voir Chapitre 4), on montre aussi que le r�esultat n'est
plus vrai si on ne suppose ni que la marche est induite par une mesure
sur une groupe, ni ρ < 1.

Il faut aussi mentionner que la transience est dans certains cas im-
pliqu�ee par les propri�et�es du graphe de Schreier. On utilise un lemme de
comparaison de Baldi-Lohou�e-Peyri�ere [BLP77].

Lemme 32 (Lemme de comparaison). Soit P1(x, y) et P2(x, y) des noyaux
doublement stochastiques sur un ensemble d�enombrable X et supposons
que P2 est sym�etrique. Supposons qu'il existe ε ≥ 0 tel que

P1(x, y) ≥ εP2(x, y)

pour tout x, y. Alors si P2 est transient, P1 l'est aussi.

Ici, doublement stochastique veut dire que les op�erateurs sont inver-
sibles et les inverses sont aussi Markov. De fa�con �equivalente, ils pr�eservent
la mesure de comptage ; le r�esultat est encore vrai dans un cas g�en�eral o�u
les op�erateurs ont une autre mesure stationnaire commune, voir Kaimano-
vich [Kai17, Section 3.C] ; voir aussi Woess [Woe00, Sections 2.C et 3.A].
Pour les marches qu'on consid�ere, il est direct de v�eri�er qu'ils sont dou-
blement stochastiques.

Si on applique le lemme au Th�eor�eme B on obtient :

Corollaire (Corollaire C). Consid�erons une action transitive d'un groupe
G. Soit S un ensemble g�en�erateur et Γ le graphe de Schreier associ�e.
Supposer que Γ est transient. Alors pour tout mesure µ sur G dont le
support engendre G en tant que semi groupe et qui a un premier moment
�ni, la marche al�eatoire induite converge presque surement vers un bout
du graphe.

On peut l'appliquer en particulier �a l'action de F sur les nombres dya-
diques. La marche induite converge donc vers les bouts du graphe, et en
utilisant l'auto-similarit�e du graphe il n'est pas di�cile de voir qu'il ne
peut pas converger avec probabilit�e 1 vers un bout sp�eci�que. Ce com-
portement non-trivial implique que son bord de Poisson n'est pas trivial.
Sans la condition de premier moment �ni par contre, il existe des mesures
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sur F telles que la marche induite sur les nombre dyadiques a un bord
trivial comme montr�e par Juschenko et Zheng [JZ18]. Juschenko [Jus18]
a aussi �etudi�e les marches induites sur les ensembles de cardinal n de
nombres dyadiques, donnant une condition combinatoire pour le trivialit�e
du bord de Poisson, et montrant qu'il existe une mesure avec un bord tri-
vial pour n = 2. Schneider et Thom [ST20, Corollary 6.2(3)] d�emontrent
que pour une action fortement transitive G y X (comme celle de F ),
pour tout n il y a une mesure avec un bord trivial si et seulement si F est
moyennable en tant que sous-groupe topologique de Sym(X). Avec cette
topologie, F est un sous-groupe de Aut(Z[1

2 ],≤), qui est connu comme
(extr�emement) moyennable d'apr�es Pestov [Pes98]. On peut trouver une
pr�esentation plus d�etaill�ee de la moyennabilit�e extr�eme dans Kechris-
Pestov-Todorcevic [KPT05], o�u ils d�eveloppent la th�eorie qui permet d'ob-
tenir des groupes extr�emement moyennables d'apr�es la th�eorie de Ramsey
structurelle. En particulier, la moyennabilit�e extr�eme de Aut(Z[1

2 ],≤) est
�equivalente [KPT05, 6(A)(iv)] �a (une version g�en�eralis�e du) th�eor�eme
classique de Ramsey.

2.4.4 Caract�erisation compl�ete des bords de Poisson

Dans [1] (voir Chapitre 3) on d�emontre la non-trivialit�e du bord en
d�ecrivant un µ-bord de con�gurations associ�ees (comme Kaimanovich a
fait dans [Kai17]). Une question plus di�cile serait d'obtenir une descrip-
tion compl�ete du bord de Poisson. Kaimanovich [Kai00] a d�evelopp�e des
crit�eres g�eom�etriques pour montrer qu'un µ-bord est le bord de Poisson
pour des groupes avec des propri�et�es hyperboliques. Il d�ecrit le bord des
groupes hyperboliques, et aussi des sous-groupes discrets des groupes de
Lie semi-simples et les groupes avec un nombre in�ni de bouts. Le ¾strip¿
crit�ere de cet article a depuis �et�e utilis�e pour nombreuses descriptions
compl�etes de bords de Poisson, comme les groupes de di��eotopie (Kai-
manovich et Masur [KM96]), Out(FN ) (Horbez [Hor16]), produits en cou-
ronnes de groupes libres avec des groupes �nis (Karlsson et Woess [KW07]),
produits en couronnes Zd o B o�u B est �ni (Erschler [Ers11] pour d ≥ 5,
Lyons et Peres [LP20] pour d ≥ 3), groupes agissant sur des R-arbres
(Gautero et Math�eus [GM12]), groupes d'automorphismes de complexes
cubiques CAT (0) (Nevo et Sageev [NS13]), groupes fondamentaux de 3-
vari�et�es ferm�ees (Malyutin et Svetlov [MS14]).
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Chapitre 3

Non-triviality of the Poisson

boundary of random walks on

the group H(Z) of Monod
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Abstract

We give su�cient conditions for the non-triviality of the Poisson boundary of random walks

on HpZq and its subgroups. The group HpZq is the group of piecewise projective homeomor-

phisms over the integers de�ned by Monod. For a �nitely generated subgroup H of HpZq, we
prove that either H is solvable, or every measure on H with �nite �rst moment that generates

it as a semigroup has non-trivial Poisson boundary. In particular, we prove the non-triviality of

the Poisson boundary of measures on Thompson's group F that generate it as a semigroup and

have �nite �rst moment, which answers a question by Kaimanovich.

Keywords� Random walks on groups, Poisson boundary, Schreier graph, Thompson's group
F , groups of piecewise projective homeomorphisms, solvable group, locally solvable group

1 Introduction

In 1924 Banach and Tarski [4] decompose a solid ball into �ve pieces, and reassemble them into two
balls using rotations. That is now called the Banach-Tarski paradox. Von Neumann [38] observes
that the reason for this phenomenon is that the group of rotations of R3 admits a free subgroup.
He introduces the concept of amenable groups. Tarski [48] later proves amenability to be the
only obstruction to the existence of "paradoxical" decompositions (like the one in Banach-Tarski's
article [4]) of the action of the group on itself by multiplication, as well as any free actions of the
group. One way to prove the result of Banach-Tarski is to see it as an almost everywhere free action
of SO3pRq and correct for the countable set where it is not (see e.g. Wagon [50, Cor. 3.10]).

The original de�nition of amenability of a group G is the existence of an invariant mean. A
mean is a normalised positive linear functional on l8pGq. It is called invariant if it is preserved by
translation on the argument. Groups that contain free subgroups are non-amenable. It is proven by
Ol'shanskii in 1980 [40] that it is also possible for a non-amenable group to not have a free subgroup.
Adyan [1] shows in 1982 that all Burnside groups of a large enough odd exponent (which are known
to be in�nite by result of Novikov and Adyan from 1968 [39]) are non-amenable. Clearly they do
not contain free subgroups. For more information and properties of amenability, see [5],[9],[17],[50].

∗The author's work is supported by the ERC grant GroIsRan.
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It is worth noting that despite the existence of a large amount of equivalent de�nitions of
amenability, to our knowledge until recently all examples of non-amenable groups without free
subgroups are proven (Ol'shanskii [40], Adyan [1], Ol'shanskii [41], Ol'shanskii-Sapir [42]) to be
such using the co-growth criterion. See Grigorchuk [18] for the announcement of the criterion,
or [19] for a full proof. For other proofs, see Cohen [11], Szwarc [47]. The criterion is closely related
to Kesten's criterion in terms of probability of return to the origin [29].

Monod constructs in [36] a class of groups of piecewise projective homeomorphisms HpAq
(where A is a subring of R). By comparing the action of HpAq on the projective line P1pRq with
that of PSL2pAq, he proves that it is non-amenable for A ‰ Z and without free subgroups for all
A. This can be used to obtain non-amenable subgroups with additional properties. In particular,

Lodha [31] proves that a certain subgroup ofHpZr
?

2
2 sq is of type F8 (in other words, such that there

is a connected CW complex X which is aspherical and has �nitely many cells in each dimension
such that π1pXq is isomorphic to the group). That subgroup was constructed earlier by Moore
and Lodha [33] as an example of a group that is non-amenable, without free subgroup and �nitely
presented. It has three generators and only 9 de�ning relations (compare to the previous example
by Ol'shanskii-Sapir [42] with 10200 relations). This subgroup is the �rst example of a group of
type F8 that is non-amenable and without a free subgroup. Later, Lodha [32] also proves that the
Tarski numbers (the minimal number of pieces needed for a paradoxical decomposition) of all the
groups of piecewise projective homeomorphisms are bounded by 25.

It is not known whether the group HpZq of piecewise projective homeomorphisms in the
case A “ Z de�ned by Monod is amenable. One of the equivalent conditions for amenability is the
existence of a non-degenerate measure with trivial Poisson boundary (see Kaimanovich-Vershik [27],
Rosenblatt [44]). This measure can be chosen to be symmetric. It is also known that amenable
groups can have measures with non-trivial boundary. In a recent result Frisch-Hartman-Tamuz-
Vahidi-Ferdowski [16] describe an algebraic necessary and su�cient condition for a group to admit
a measure with non-trivial boundary. In the present paper we give su�cient conditions for non-
triviality of the Poisson boundary on HpZq. There are several equivalent ways to de�ne the Poisson
boundary (see Kaimanovich-Vershik [27]). Consider a measure µ on a group G and the random
walk it induces by multiplication on the left. It determines an associated Markov measure P on the
trajectory space GN.

De�nition 1.1. Consider the following equivalence relation on GN: two trajectories px0, x1, . . . q
and py0, y1, . . . q are equivalent if and only if there exist i0 P N and k P Z such that for every i ą i0
xi “ yi`k. In other words, if the trajectories coincide after a certain time instant up to a time
shift. The Poisson boundary (also called Poisson-Furstenberg boundary) of µ on G is the quotient
of pGN, P q by the measurable hull of this equivalence relation.

Note that if the support of the measure does not generate G, in which case we say that the
measure is degenerate, this de�nes the boundary on the subgroup generated by the support of the
measure rather than on G. For a more recent survey on results concerning the Poisson boundary,
see [14].

Thompson's group F is a subgroup of HpZq, as follows from Kim, Koberda and Lodha [30].
This group is the group of orientation-preserving piecewise linear self-isomorphisms of the closed
unit interval with dyadic slopes, with a �nite number of break points, all break points being dyadic
numbers (see Cannon-Floyd-Perry [8] or Meier's book [34, Ch. 10] for details and properties).
It is not known whether it is amenable, which is a celebrated open question. Kaimanovich [26]
and Mishchenko [35] prove that the Poisson boundary on F is not trivial for �nitely supported
non-degenerate measures. They study the induced walk on the dyadic numbers in their proofs.
However, there exist non-degenerate symmetric measures on F for which the induced walk has
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trivial boundary as proven by Juschenko and Zheng [21]. An equivalent statement is true for
�nitely generated subgroups of HpZq, see Remark 6.4. The results of the current article are inspired
by the paper of Kaimanovich. It is not hard to prove that HpZq is not �nitely generated (see
Remark 3.1.2), so we will consider measures the support of which is not necessarily �nite.

Our main result is as follows. Consider the group HpZq of piecewise projective homeomor-
phisms, as de�ned by Monod [36], in the case A “ Z. For g P HpZq denote by Brpgq the number of
break points of g, which is the ends of pieces in its piecewise de�nition. We will say that a measure µ
on a subgroup of HpZq has �nite �rst break moment if the expected number of break points ErBrs
is �nite. A group H is called locally solvable if all �nitely generated subgroups are solvable. Then

Theorem 1.2. For any subgroup H of HpZq which is not locally solvable and any measure µ on H
with �nite �rst break moment ErBrs and such that the support of µ generates H as a semigroup,

the Poisson boundary of pH,µq is non-trivial.
For a measure µ on a �nitely generated group, we say that µ has �nite �rst moment if the word

length over any �nite generating set has �nite �rst moment with respect to µ. This is well de�ned
as word lengths over di�erent �nite generating sets are bilipschitz, and in particular the �niteness
of the �rst moment does not depend on the choice of generating set. We remark (see Remark 7.4)
that any measure µ on a �nitely generated subgroup H of HpZq that has �nite �rst moment also
has �nite expected number of break points. Therefore by Theorem 1.2 if µ is a measure on a non-
solvable �nitely generated subgroup H such that the support of µ generates H as a semigroup and
µ has �nite �rst moment, the Poisson boundary of pH,µq is non-trivial. Furthermore, in the other
case we will show (Lemma 9.1) that so long as H is not abelian, we can construct a symmetric
non-degenerate measure with �nite 1´ ε moment and non-trivial Poisson boundary.

The structure of the paper is as follows. In Section 3, given a �xed s P R, to every element
g P HpZq we associate (see De�nition 3.2.1) a con�guration Cg. Each con�guration is a function
from the orbit of s into Z. The value of a con�guration Cg at a given point of the orbit of s represents
the slope change at that point of the element g to which it is associated. There is a natural quotient
map of the boundary on the group into the boundary on the con�guration space. The central idea
of the paper is to show that under certain conditions, the value of the con�guration at a given point
of the orbit of s almost always stabilises. If that value is not �xed, this then implies non-triviality
of the boundary on the con�guration space, and thus non-triviality of the Poisson boundary on the
group. These arguments bear resemblance to Kaimanovich's article on Thompson's group [26], but
we would like to point out that the action on R considered in the present article is di�erent.

In Section 4 we obtain the �rst result for non-triviality of the Poisson boundary (see Lemma 4.2).
Measures satisfying the assumptions of that lemma do not necessarily have �nite �rst break mo-
ment. In Section 5 we study copies of Thompson's group F in HpZq. Building on the results from it,
in Section 6 we obtain transience results (see Lemma 6.1) which we will need to prove Theorem 1.2.
In Section 7 we prove Lemma 7.2 which is the main tool for proving non-triviality of the Poisson
boundary. In the particular case of Thompson's group, the lemma already allows us to answer a
question by Kaimanovich [26, 7.A]:

Corollary 1.3. Any measure on Thompson's group F that has �nite �rst moment and the support

of which generates F as a semi-group has non-trivial Poisson boundary.

We mention that the arguments of Lemma 7.2 could also be applied for the action and
con�gurations considered in Kaimanovich's article, giving an alternative proof of the corollary.
Combining the lemma with the transience results from Section 6 we obtain non-triviality of the
Poisson boundary under certain conditions (see Lemma 7.3), which we will use to prove the main
result. As the negation of those conditions passes to subgroups, it su�ces to show that if H is
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�nitely generated and does not satisfy them, it is then solvable, which we do in Section 8. Remark
that the theorem generalises the result of Corollary 1.3. In Section 9 we give an additional remark
on the case of �nite 1´ ε moment.
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2 Preliminaries

2.1 PSL2pZq and HpZq
The projective linear group PSL2pRq is de�ned as SL2pRq{tId,´Idu, which is the natural quotient
that describes the linear actions on the projective space P1pRq. As the latter can be de�ned as
S{px „ ´xq, we can think of it as a circle for understanding the dynamics of the action of the
projective group. Remark that it is commonly understood as the boundary of the hyperbolic plane.
In this paper we will not be interested in the interior of the hyperbolic plane as we do a piecewise
de�nition of HpAq on P1pRq. An element h P PSL2pRq is called:

1. Hyperbolic if |trphq| ą 2 (or equivalently, trphq2 ´ 4 ą 0). In this case a calculation shows
that h has two �xed points in P1pRq. One of the points is attractive and the other repulsive
for the dynamic of h, meaning that starting from any point and multiplying by h (respectively
h´1) we get closer to the attractive (resp. the repulsive) �xed point.

2. Parabolic if |trphq| “ 2. In this case h has exactly one "double" �xed point. We can identify
P1pRq with R Y t8u in such a way that the �xed point is 8, in which case h becomes a
translation on R. We will go into detail about the identi�cation below.

3. Elliptic if |trphq| ă 2. Then h has no �xed points in P1pRq and is conjugate to a rotation.
If we consider it as an element of PSL2pCq, we can see that it has two �xed points in P1pCq
that are outside P1pRq.

Consider an element

ˆ
x
y

˙
P R2z0. If y ‰ 0, identify it with x

y , otherwise with 8. This

clearly passes on P1pRq, and the action of PSL2pRq becomes

ˆ
a b
c d

˙
.x “ ax`b

cx`d . The conventions

for in�nity are

ˆ
a b
c d

˙
p8q “ a

c if c ‰ 0 and 8 otherwise, and if c ‰ 0,

ˆ
a b
c d

˙
.p´d

c q “ 8. Note
that by conjugation we can choose any point to be the in�nity.

Let us now look into the groups de�ned by Monod [36]. We de�ne Γ as the group of all
homeomorphisms of R Y t8u that are piecewise in PSL2pRq with a �nite number of pieces. Take
a subring A of R. We de�ne ΓpAq to be the subgroup of Γ the elements of which are piecewise
in PSL2pAq and the extremities of the intervals are in PA, the set of �xed points of hyperbolic
elements of PSL2pAq.
De�nition 2.1.1. The group of piecewise projective homeomorphisms HpAq is the subgroup of
ΓpAq formed by the elements that �x in�nity.
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It can be thought of as a group of homeomorphisms of the real line, and we will use the same
notation in both cases. We will note G “ HpZq to simplify. Note in particular that 8 R PZ. This
means that the germs around `8 and ´8 are the same for every element of G. The only elements
in PSL2pZq that �x in�nity are

"ˆ
αn “

ˆ
1 n
0 1

˙˙

nPZ

*
“ GX PSL2pZq. (1)

Fix g P G and let its germ at in�nity (on either side) be αn. Then gα´n has �nite support.
The set of elements Ḡ Ă G that have �nite support is clearly a subgroup, and therefore if we denote
A “ tαn, n P Zu, we have

G “ Ḡ`A
For the purposes of this article, we also need to de�ne:

De�nition 2.1.2. Consider the elements of Γ that �x in�nity and are piecewise in PSL2pZq. We
call the group formed by those elements the piecewise PSL2pZq group, and denote it as rG.

Remark that in an extremity γ of the piecewise de�nition of an element g P rG, the left and
right germs gpγ ´ 0q and gpγ ` 0q have a common �xed point. Then gpγ ` 0q´1gpγ ´ 0q P PSL2pZq
�xes γ. Therefore the extremities are in PZYQYt8u, that is in the set of �xed points of any (not
necessarily hyperbolic) elements of PSL2pZq. In other words, the only di�erence between rG and
G “ HpZq is that rG is allowed to have break points in Q Y t8u, that is in the set of �xed points
of parabolic elements. Clearly, G ď rG. This allows us to restrain elements, which we will need in
Section 8:

De�nition 2.1.3. Let f P rG, and a, b P R such that fpaq “ a and fpbq “ b. The function fæpa,bq
de�ned by fæpa,bqpxq “ fpxq for x P pa, bq and fpxq “ x otherwise is called a restriction.

Remark that fæpa,bq P rG. The idea of this de�nition is that we extend the restrained function

with the identity function to obtain an element of rG.
The subject of this paper is G, however in order to be able to apply results from previous

sections in Section 8, we will prove several lemma for rG. The equivalent result will easily follow for
G just from the fact that it is a subgroup.

2.2 Random walks

Throughout this article, for a measure µ on a group H we will consider the random walk by
multiplication on the left. That is the walk pxnqnPN where xn`1 “ ynxn and the increments yn are
sampled by µ. In other words, it is the random walk de�ned by the kernel ppx, yq “ yx´1. Remark
that for walks on groups it is standard to consider the walk by multiplications on the right. In this
article the group elements are homeomorphisms on R and as such they have a natural action on the
left on elements of R, which is pf, xq ÞÑ fpxq.

We will use De�nition 1.1 as the de�nition of Poisson boundary. For completeness' sake we also
mention its description in terms of harmonic functions. For a group H and a probability measure
µ on H we say that a function f on H is harmonic if for every g P H, fpgq “ ř

hPH fphgqµphq.
For a non-degenerate measure, the L8 space on the Poisson boundary is isomorphic to the space of
bounded harmonic functions on H, and the exact form of that isomorphism is given by a classical
result called the Poisson formula. In particular, non-triviality of the Poisson boundary is equivalent
to the existence of non-trivial bounded harmonic functions.

We recall the entropy criterion for triviality of the Poisson boundary.

5

40



De�nition 2.2.1. Consider two measures µ and λ on a discrete group H. We denote µ ˚ λ their
convolution, de�ned as the image of their product by the multiplication function. Speci�cally:

µ ˚ λpAq “
ż
µpAh´1qdλphq.

Remark that µ˚n gives the probability distribution for n steps of the walk, starting at the
neutral element. For a probability measure µ on a countable group H we denote Hpµq its entropy,
de�ned by

Hpµq “
ÿ

gPH
´µpgq logµpgq.

One of the main properties of entropy is that the entropy of a product of measures is not
greater than the sum of their entropies. Combining that with the fact that taking image of a
measure by a function does not increase its entropy, we obtain Hpµ ˚ λq ď Hpµq `Hpλq. Avez [2]
introduces the following de�nition:

De�nition 2.2.2. The entropy of random walk (also called asymptomatic entropy) of a measure µ

on a group H is de�ned as limnÑ8 Hpµ˚nq
n .

Theorem 2.2.3 (Entropy Criterion (Kaimanovich-Vershik [27], Derriennic [12])). Let H be a count-

able group and µ a non-degenerate probability measure on H with �nite entropy. Then the Poisson

boundary of pH,µq is trivial if and only if the asymptotic entropy of µ is equal to zero.

3 Some properties of groups of piecewise projective homeomor-

phisms

In Subsection 3.1 we study PZ and the group action locally around points of it. In Subsection 3.2,
using the results from the �rst subsection, to each element g P rG we associate a con�guration Cg.
We then also describe how to construct an element with a speci�c associated con�guration.

3.1 Slope change points in G “ HpZq

Let g be a hyperbolic element of PSL2pZq. Let it be represented by
ˆ
a b
c d

˙
and denote trpgq “ a`d

its trace. Then its �xed points are
d´a˘

?
trpgq2´4

c . As the trace is integer and greater than 2 in

absolute value, this number is never rational. Furthermore, it is worth noting that Qpatrpgq2 ´ 4q
is stable by PSL2pZq and therefore by rG (and G). If we enumerate all prime numbers as ppiqiPN, we
have, for I ‰ J Ă N �nite, Qpaś

iPI piqXQpaś
iPJ piq “ Q. We just mentioned that PZXQ “ H

so we have

PZ “
ğ

IĂN �nite

¨
˝PZ

č
Q

¨
˝
dź

iPI
pi

˛
‚
˛
‚

where each set in the decomposition is stable by rG. Note also that the �xed points of parabolic
elements of PSL2pZq are rational. This actually completely characterizes the set PZ, as we will now
show that PZ

Ş
Q
`aś

iPI pi
˘ “ Q

`aś
iPI pi

˘ zQ:
Lemma 3.1.1. Take any s P Qp?kqzQ for some k P N. Then s P PZ.
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Remark that k is not an exact square, as Qp?kqzQ has to be non-empty.

Proof. Note �rst that to have
?
tr2 ´ 4 P Qp?kq for some matrix it su�ces to �nd integers x ě 2

and y such that x2 ´ ky2 “ 1. Indeed, any matrix with trace 2x will then satisfy this, for exampleˆ
x x2 ´ 1
1 x

˙
. This is known as Pell's equality, and has in�nitely many solutions for any k that is

not a square (see Mordell's book [37, Ch. 8]).

Write s “ p
q ` p1

q1
?
k for some integers p, q, p1, q1. Applying Pell's equality for pp1q1q2q2k, we

obtain integers x and a such that x2´a2pp1q1q2q2k “ 1. In other words, x2´y2k “ 1 for y “ p1q1q2a.

We construct

ˆ
x` q12pqa b
q12q2a x´ q12pqa

˙
where b “ x2´q14p2q2a2´1

q12q2a “ p12q2ak ´ q12p2a P aZ. The

matrix has s for a �xed point, and s is not rational, therefore the matrix is a hyperbolic element of
PSL2pZq.
Remark 3.1.2. The break points a �nite number of elements of HpZq are all contained in the sets
Qp?kq for a �nite number of k, so Lemma 3.1.1 implies that HpZq is not �nitely generated.

In order to de�ne con�gurations, we wish to study the slope changes at elements of PZ.
Consider g P rG and s P PZ such that gps ` 0q ‰ gps ´ 0q. Then it is easy to see that f “
gpγ ´ 0q´1gpγ ` 0q P PSL2pZq �xes s. Therefore, in order to study the slope changes we need to
understand the stabiliser of s in PSL2pZq. We prove:

Lemma 3.1.3. Fix s P P1pRq. The stabiliser Sts of s in PSL2pZq is either isomorphic to Z or

trivial.

Proof. Assume that Sts is not trivial, and let f P Sts be di�erent from the identity. Clearly, f is
not elliptic. If f is hyperbolic, s P PZ, and if f is parabolic, s P Q Y t8u. We distinguish three
cases, that is s P PZ, s “ 8 and s P Q.

We �rst assume s P PZ. Let s “ r` r1?k with r, r1 P Q and k P Z. Note that the calculations
in the beginning of the section yield that for every element f in Sts that is not the identity, f is

hyperbolic and the other �xed point of f is s̄ “ r´r1?k. Let i “
˜

1
2 ´ r`r1?k

2
1

r1
?
k

1´ r
r1
?
k

¸
P PSL2pRq and

consider the conjugation of Sts by i. By choice of i we have that ipsq “ 0 and ips̄q “ 8. Therefore
the image of Sts is a subgroup of the elements of PSL2pRq that have zeros on the secondary diagonal.
Furthermore, calculating the image of an example matrix

ˆ
a b
c d

˙
, for tr “ a ` d the trace of the

matrix, we get

i

ˆ
a b
c d

˙
i´1 “

˜?
tr2´4`tr

2 0

0
?
tr2´4´tr

2

¸
(2)

Thus to understand the image of Sts we just need to study the elements of the form x`y?k
2

with x2 ´ ky2 “ 4. This appears in a generalized form of Pell's equation, and those elements are
known [37, Ch. 8] to be powers of a fundamental solution (which is also true for the classic Pell
equation if you identify a solution x2´y2k “ 1 with a unit element x`y?k in Zr?ks). This proves
that the image of Sts by this conjugation, which is isomorphic to Sts, is a subgroup of a group
isomorphic to Z. Sts is then also isomorphic to Z. The matrix with the fundamental solution in
the upper left corner de�nes a canonical generator for the group of elements of the form seen in (2),
and its smallest positive power in the image of Sts de�nes a canonical generator for Sts.

7

42



Assume now s “ 8. As we described in (1), the stabiliser of 8 is pαnqnPN, which is trivially
isomorphic to Z.

Lastly, assume that s “ p
q P Q with p and q co-prime. There exist m and n such that

pm` qn “ 1. Then i “
ˆ
m n
´q p

˙
P PSL2pZq veri�es ipsq “ 8. Thus the conjugation by i de�nes

an injection from the subgroup that �xes s into St8 “ A. We observe that non-trivial subgroups
of Z are isomorphic to Z, which concludes the proof.

Having an isomorphism between Sts (for s P PZ) and Z will be useful to us, so we wish to
know its exact form. We prove:

Lemma 3.1.4. Let s P PZ. There exists φs P R` that remains constant on the orbit Gs of s such

that f ÞÑ logφspf 1psqqq de�nes an isomorphism between Sts and Z.

Proof. The derivative on the �xed point is multiplicative. Therefore for a �xed s, this follows from
Lemma 3.1.3 and the fact that subgroups of Z are isomorphic to Z (or trivial, which is impossible
here). What we need to prove is that φ remains constant on Gs. Fix s and consider s1 P Gs. Let
j P PSL2pZq be such that jpsq “ s1. Then the conjugation by j de�nes a bijection between Sts and
Sts1 . Calculating the derivative on an element f P Sts we get pjfj´1q1ps1q “ j1psqpj´1q1pjpsqqf 1psq “
f 1psq, which proves the result.

We further denote ψ : A ÞÑ Z (see 1) the map that associates n to αn, and ψr the conjugate
map for any r P Q. Remark that this is well de�ned by Lemma 3.1.3 and conjugations in Z being
trivial.

3.2 Con�gurations

Fix s P PZ and let φ “ φs be given by Lemma 3.1.4. By the isomorphism it de�nes, there exists
an element gs that �xes s, such that g1spsq “ φs. As s R Q, gs is hyperbolic. We associate to each
element of the piecewise PSL2pZq group rG (see De�nition 2.1.2) a con�guration representing the
changes of slope at each point of the orbit rGs “ Gs of s, precisely:

De�nition 3.2.1. To g P rG we assign Cg : GsÑ Z by

Cgpγq “ logφpg1pγ ` 0qg1pγ ´ 0q´1q.
Note that by choice of φ this value is well de�ned: indeed, gpγ ` 0qgpγ ´ 0q´1 P PSL2pZq,

�xes γ, and is therefore in Stγ .

Remark that by de�nition of rG each con�guration in the image of the association has a �nite
support. Remark also that the con�guration ignores information about the changes in slope outside
the orbit of s. For s P Q we further denote Cgpγq “ ψγpg1pγ ` 0qg1pγ ´ 0q´1q, which will have
similar properties. In the rest of the paper we will consider s P PZ unless otherwise speci�ed. For
completeness' sake, remark also that G “ HpZq ď rG and the orbits of G and rG on s are the same
(as they are both the same as the orbit of PSL2pZq) and therefore De�nition 3.2.1 could be done
directly for G, and what we would obtain is the same as restraining from the current de�nition.

Lemma 3.2.2. For every s P PZ, there exists an element hs P G such that hsps´0q´1hsps`0q “ gs
and all other slope changes of hs are outside Gs. In particular, Chs “ δs.
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Figure 1: Graphs of gs and the identity

sId
gs
g´1
s

Figure 2: Graphs of gs and js

t̄

s̃

Id
gs
g´1
s

js

Proof. Fix s P PZ and let k “ ks be the unique square-free integer such that s P Qp?kq. We will
construct hs such that hspsq “ s. Note that in that case we have Ch´1

s
“ ´δs. This implies that if

we construct an element h̃s that veri�es h̃sps´ 0q´1h̃sps` 0q “ g˘1
s and all other slope changes are

outside Gs, choosing hs “ h̃˘1
s gives the result. In other words, we can replace gs with g

´1
s . Seen

as a function on R, gs is de�ned in all points but ´d
c . It is then continuous in an interval around s.

Moreover, if the interval is small enough, s is the only �xed point in it. Therefore for some ε, either
gspxq ą x for every x P ps, s ` εq, or gspxq ă x in that interval. As we have the right to replace it
with its inverse, without loss of generality we assume that gs is greater than the identity in a right
neighbourhood of of s.

Write s “ r`r1?k with r, r1 P Q. Then the other �xed point of gs is its conjugate s̄ “ r´r1?k.
Remark that it is impossible for ´d

c to be between s and s
1 as the function gs is increasing where it

is continuous and has the same limits at `8 and ´8 (see Figure 1). If r1 ă 0, gs is greater than
the identity in ps, s̄q as it is continuous there. In that case, it is smaller than the identity to the left
of the �xed points, but as it is increasing and has a �nite limit at ´8, this implies (see Figure 1)
that ´d

c ă s. Similarly, if s ą s̄, gs is increasing and greater than the identity to the right of s, but

has a �nite limit at `8, so ´d
c ą s.

We will �nd a hyperbolic element js verifying: the larger �xed point t of js is not in Gs and
t ą ´d

c , while the smaller �xed point t̄ is between s and s̄, and js is greater than the identity
between t̄ and t. If r1 ă 0 consider the interval pt̄, s̄q. At its in�mum, js has a �xed point while gs
is greater than the identity, and at its supremum the inverse is true. By the mean values theorem,
there exists s̃ in that interval such that jsps̃q “ gsps̃q (see Figure 2). If r1 ą 0, consider the interval
ps,´d

c q. At its in�mum, gs is �xed and therefore smaller than js, and at its supremum gs diverges
towards `8 while js has a �nite limit. Again by the mean values theorem, there exists s̃ in that
interval where gs and js agree. As ´d

c ă t by hypothesis, in both cases we have s ă s̃ ă t. We then
de�ne

hspxq “

$
’’’’&
’’’’%

x x ď s

gspxq s ď x ď s̃

jspxq s̃ ď x ď t

x t ď x

Thus it would su�ce to prove that we can construct js that veri�es those properties and such
that s̃ R Gs. Note that s̃ is a �xed point of g´1

s js, so to prove that it is not in Gs it will su�ce to
study the trace of the latter. Remark that in this de�nition hs is strictly greater than the identity
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in an open interval, and equal to it outside (this is with the assumption on gs, in the general case
hs has its support in an open interval, and is either strictly greater then the identity on the whole
interval, or strictly smaller).

Write r “ p
q . By Bezout's identity, there are integers m̃ and ñ such that qñ ´ pm̃ “ 1.

Then the matrix i “
ˆ
ñ p
m̃ q

˙
P PSL2pZq veri�es i.0 “ p

q . Taking j̃s “ i´1jsi it su�ces to �nd j̃s

with �xed points outside Gs, the smaller one being close enough to 0, and the greater one large
enough. Remark that the only information we have on gs is its trace, so this does not complicate
the computations for s̃.

We will de�ne j̃s in the form

ˆ
x1 `ma1 n2lsa

1 ´m2a1
a1 x1 ´ma1

˙
where x12 ´ n2a12ls “ 1. Its �xed

points are m˘ n?ls. By choosing m arbitrarily large, the second condition will be satis�ed. Note

ig´1
s i´1 “

ˆ
ã b̃

c̃ d̃

˙
and trpgsq2´4 “ o2k. Calculating the trace of g´1

s js we get trpgsqx1`a1b̃`mz1`
nz2 with z1, z2 P Z. Then, admitting that n divides x1 ´ 1 (which will be seen in the construction
of x1) we obtain for some zi P Z, i P N:

trpg´1
s jsq2 ´ 4 “ mz3 ` nz4 ` a12b̃2 ` 2a1b̃x1trpgsq ` x12trpgsq2 ´ trpgsq2 ` trpgsq2 ´ 4

“ mz3 ` nz5 ` a12b̃2 ` 2a1b̃trpgsq ` n2a12lstrpgsq2 ` o2k

“ mz3 ` nz6 ` a12b̃2 ` 2a1b̃trpgsq ` o2k.

(3)

Take a prime ps that is larger than k and bptrpgsq ` 2q. There is an integer a2 ă ps such that
bptrpgsq ` 2qa2 ” ´1 mod ps. Take a “ o2ka2. Then

a12b̃2 ` 2a1b̃trpgsq ` o2k “ o2kpbptrpgsq ` 2qa2 ` 1qpbptrpgsq ´ 1qq.
As Zrpss is a �eld, clearly bptrpgsq´2qa2 ı ´1 mod ps. As bptrpgsq`2qa2 ă p2

s, the product
is divisible by ps but not p

2
s. We will choose m and n divisible by p2

s, which will then ensure that
the value in (3) is divisible by ps but not p

2
s, proving that s̃ R Gs.

All that is left is choosing n and m. As we just noted, we need them to be multiples of p2
s.

Aside from that n needs to satisfy x12´n2a12ls “ 1, ls must not be a square times k and we need to be
able to makem´n?ls arbitrarily small. Writem “ p2

sm
1 and n “ p2

sn
1. Thenm1 can be anything so

long as m´n?ls becomes arbitrarily small. In other words, we are only interested in the fractional
part of n1

?
ls. We choose x1 “ n12a12p5

s ´ 1 and will prove that the conditions are satis�ed for n1
large enough. Then x12 ´ n2a12ls “ 1 is satis�ed for ls “ pspn12a12p5

s ´ 2q. In particular, ps divides
ls but its square does not, so ls is not equal to a square times k. Moreover,

?
ls “

apn1a1p3
sq2 ´ 2ps

and as the derivative of the square root is strictly decreasing,
apn1a1p3

sq2 ´ 2ps ´ n1a1p3
s Ñ 0 for

n1 Ñ8. Its factorial part then clearly converges towards 1, which concludes the proof.

For a product inside the group rG, by the chain rule we have

pg2g1q1pγq “ g12pg1pγqqg11pγq
and thus

Cg2g1pγq “ Cg1pγq ` Cg2pg1pγqq (4)

That gives us a natural action of rG on ZGs by the formula pg, Cq Ñ Cg`SgC where SgCpγq “
Cpgpγqq. It is easy to check that it also remains true for s P Q.
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Lemma 3.2.3. There is no con�guration C : GsÑ Z such that C “ Chs ` ShsC.
Indeed, applying (4) and taking the value at s we get a contradiction.
Consider g and h such Cg “ Ch. We have CId “ Cg´1 ` Sg

´1
Cg and thus Chg´1 “ Cg´1 `

Sg
´1
Ch “ CId “ 0. We denote

Hs “ tg P G : Cg “ 0u.
Then:

Lemma 3.2.4. The element hs and the subgroup Hs generate G for every s P PZ.

Proof. We show for g P G by induction on }Cg}1 “ ř
xPGs |Cgpxq| that it is in the group generated

by thsu YHs . The base is for }Cg}1 “ 0, in which case we have Cg ” 0 and the result is part of
the statement hypothesis. We take g P G and assume that every element with smaller l1 measure of
its con�guration is in the group generated by thsu YHs. We take any α P supppCgq. Without loss
of generality, we can assume that Cgpαq ą 0. As gpαq P Gs, by Lemma 3.2.5 there exists h P Hs

such that hpsq “ gpαq and Ch “ 0. Let g̃ “ hhsh
´1. As hs P thsu YHs, we have g̃ P xthsu YHsy.

Applying the composition formula (4) we obtain Cg̃pxq “ 0 for x ‰ gpαq and Cg̃pgpαqq “ 1. We
consider ḡ “ g̃´1g. If x ‰ gpαq, by the composition formula (4) we get Cḡpxq “ Cgpxq, and at α we
have Cḡpαq “ Cgpαq ´ 1. By hypothesis we then have ḡ P xthsu YHsy, and as g̃ is also included in
this set, so is g.

Lemma 3.2.5. For any g P PSL2pZq and γ P R there exists h P Hs such that gpγq “ hpγq.
Proof. By Monod's construction in [36, Proposition 9], we know that we can �nd h P G that agrees

with g on γ of the form q´1g where q “
ˆ
a b` ra
c d` rc

˙
in the interval between its �xed points that

contains in�nity and the identity otherwise. To have this result, what is required is that either r or
´r (depending on the situation) be large enough. Clearly, Ch ” 0 would follow from slope change
points of q being outside Gs (as neither of them is in�nity). In particular, it is enough to prove

that for some in�nitely large r, the �xed points of

ˆ
a b` ra
c d` rc

˙
are outside Qp?kq. The trace of

that matrix is pa` dq ` rc. Let p be a large prime number that does not divide 2, k or c. As c and
p are co-prime, there exists r0 such that a ` d ` r0c “ p ` 2 pmod pq. Then for every i P Z, we
have pa ` d ` pr0 ` p2iqcq2 ´ 4 “ 4ppmodp2q. As p and 4 are co-prime, this implies that for each
r “ r0 ` p2i the �xed points of that matrix are not in Qp?kq as p does not divide k.

4 Convergence condition

Fix s P PZ and let us use the notations from Subsection 3.2. For a measure µ on rG we denote
Cµ “ Ť

gPsupppµq supppCgq its "support" on Gs. That is, Cµ Ă Gs is the set of points in which at
least one element that is inside the support of µ in the classical sense changes slope. We thus obtain
the �rst result

Lemma 4.1. Consider the piecewise PSL2pZq group rG (see De�nition 2.1.2). Let µ be a measure

on a subgroup of rG such that Cµ is transient with respect to µ for the natural action of rG on R and

hs is in the semigroup generated by supppµq. Then the Poisson boundary of µ on the subgroup is

not trivial.

11

46



Proof. Consider a random walk gn with gn`1 “ hngn. For a �xed γ P Gs we have

Cgn`1pγq “ Cgnpγq ` Chnpgnpγqq
By the hypothesis of transiency this implies that Cgnpγq stabilises. In other words, Cgn

converges pointwise towards a limit C8. This de�nes a hitting measure on ZGs that is a quotient
of µ's Poisson boundary. Moreover, it is µ-invariant by the natural action on ZGs. It remains to
see that it is not trivial. Assume the opposite, which is that there exists a con�guration C such
that for almost all walks, the associated con�guration Cgn converges pointwise to C. By hypothesis
there are elements h1, . . . , hm with positive probability such that hmhm´1 . . . h1 “ hs. There is a
strictly positive probability for a random walk to start with hmhm´1 . . . h1. Applying (4) we get
C “ Chs ` ShsC, which is contradictory to Lemma 3.2.3.

This lemma, along with Lemma 3.2.4 implies:

Lemma 4.2. Fix s P PZ. Let µ be a measure on G “ HpZq that satis�es the following conditions:

(i) The element hs belongs to the support of µ,
(ii) The intersection of the support of µ with the complement of Hs is �nite,

(iii) The action of µ on the orbit of s is transient.
Then the Poisson boundary of µ is non-trivial.

We will now show how measures satisfying whose assumptions can be constructed. Remark
that the question of existence of a measure with non-trivial boundary has already been solved by
Frisch-Hartman-Tamuz-Vahidi-Ferdowski [16]. In our case, notice that A Ă Hs (see (1)), and it
is isomorphic to Z. We can then use a measure on A to ensure transience of the induced walk
on the orbit. To prove that, we use a lemma from Baldi-Lohou�e-Peyri�ere [3] (see also Woess [51,
Section 2.C,3.A]). Here we formulate a stronger version of the lemma, as proven by Varopoulos [49]:

Lemma 4.3 (Comparison lemma). Let P1px, yq and P2px, yq be doubly stochastic kernels on a

countable set X and assume that P2 is symmetric. Assume that there exists ε ě 0 such that

P1px, yq ě εP2px, yq
for any x, y. Then

1. For any 0 ď f P l2pXq
ÿ

nPN
xPn1 f, fy ď

1

ε

ÿ

nPN
xPn2 f, fy.

2. If P2 is transient then so is P1 (for any point x P X, it follows from (1) applied to f “ δx).

Here, doubly stochastic kernels means that the operators are reversible and the inverse is also
Markov. It is in particular the case for P px, yq “ µpyx´1q for some measure on a group (as the
inverse is px, yq ÞÑ µpxy´1q).
Remark 4.4. If λ is a transient measure on A and µ satis�es conditions (i) and (ii) of Lemma 4.2,
then the comparison lemma by Baldi-Lohou�e-Peyri�ere (Lemma 4.3) implies that ελ ` p1 ´ εqµ
satis�es all the conditions of the lemma for any 0 ă ε ă 1. In other words, this is a way to construct
non-degenerate symmetric measures on G with non-trivial Poisson boundary.

For completeness' sake, we show that there exist measures positive on all of G that have
non-trivial boundary.
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Lemma 4.5. Let µ be a measure on a group H with �nite entropy and non-zero asymptotic entropy

and which generates H as a semigroup. Then there exists a measure µ̃ with support equal to H that

also has �nite entropy and non-zero asymptotic entropy. Furthermore, if µ is symmetric, so is µ̃.

Proof. De�ne µ̃ “ 1
e

ř
iPN

µ˚i
i! . By a result of Kaimanovich [23, Corollary to Theorem 4] we get

hpH, µ̃q “ hpH,µq
ÿ

iPN

i

ei!
“ hpH,µq.

Moreover, as the entropy of µ̃˚n is not smaller than the entropy of µ̃, �nite asymptotic entropy
implies �nite entropy.

From this lemma and the entropy criterion Theorem 2.2.3 it follows that to have a measure
positive on all of G with non-trivial boundary it su�ces to construct a measure verifying the
conditions of Lemma 4.2 with �nite asymptotic entropy, which we can achieve with the construction
presented in Remark 4.4.

5 Thompson's group as a subgroup of G “ HpZq
In [30] Kim, Koberda and Lodha show that any two increasing homeomorphisms of R the supports
of which form a 2-chain (as they call it) generate, up to taking a power of each, a group isomorphic
to Thompson's group F . Let us give the exact de�nition of this term. For a homeomorphism f of
R we call its support supppfq the set of points x where fpxq ‰ x. Remark that we do not de�ne
the closure of that set as support, as it is sometimes done. Consider four real numbers a, b, c, d with
a ă b ă c ă d. Take two homeomorphisms f and g such that supppfq “ pa, cq and supppgq “ pb, dq.
In that case we say that their supports form a 2-chain, and the homeomorphisms generate a 2-
prechain group. In other words, two homeomorphisms generate a 2-prechain if their supports are
open intervals that intersect each other but neither is contained in the other.

Clearly, there exist many such pairs in G. We will give a simple example. Fix s and �nd
positive rational numbers r̃ and r̃1 such that r̃ ă s ă r̃` r̃1?ps ă t. Recall that ps is a prime larger
than k. Then choose a hyperbolic element g̃ that �xes r̃ ` r̃1?ps and de�ne

h̃spxq “
#
g̃spxq r̃ ´ r̃1?ps ď x ď r̃ ` r̃1?ps
x otherwise.

By de�nition of r̃ and r̃1, h̃s and hs clearly form a 2-prechain, and thus up to a power they
generate a copy of Thompson's group (see [30, Theorem 3.1]). We will denote as the action F ñ R
this de�nes. To obtain the convergence results, we need to prove that the induced random walks
on the Schreier graphs of certain points are transient. By the comparison lemma by Baldi-Lohou�e-
Peyri�ere (Lemma 4.3) it would su�ce to prove it for the simple random walk on the graph, which
is why we will study its geometry. In the dyadic representation of Thompson's group, the geometry
of the Schreier graph on dyadic numbers has been described by Savchuk [45, Proposition 1]. It is a
tree quasi-isometric to a binary tree with rays attached at each point (see Figure 4), which implies
transience of the simple random walk. For a di�erent proof of transience see Kaimanovich [26,
Theorem 14]. We will see that the Schreier graph has similar geometry in the case of as (see
Figure 3).

Lemma 5.1. Consider two homeomorphisms f and g of R the supports of which are supppfq “ pa, cq
and supppgq “ pb, dq with a ă b ă c ă d. Denote H the group generated by f and g. Then the

simple random walk on the Schreier graph of H on the orbit of b is transient.
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Proof. Up to replacing f or g with its inverse, we can assume without loss of generality that fpxq ą x
for x P supppfq and gpxq ą x for x P supppgq. Denote by Γ the Schreier graph of H on the orbit of
b. The vertices of this graph are the points of the orbit Hb of b by H, and two points are connected
by an edge if and only if f , g, f´1 or g´1 sends one point into the other. Denote by Γ̃ the subgraph
de�ned by the vertexes that belong to the closed interval rb, cs. At every point x of Γ such that
x R rb, cs, in a neighbourhood px ´ ε, x ` εq of x, one of the two elements f and g acts trivially,
and the other one is strictly greater than the identity map. Without loss of generality, let f act
trivially. Let i0 be the largest integer such that gi0pxq P rb, cs. Then the set of points pgipxqqiěi0
is a ray that starts at an element of Γ̃. As the simple random walk on Z is recurrent (see [13,
Chapter 3, Theorem 2.3]), the walk always returns to Γ̃ in �nite time, and that part of the graph
(Γ̃q is what we need to study.

Replacing, if necessary, f or g by its power, we can assume that g´1pcq ă fpbq. Denote
A “ rb, g´1pcqs “ g´1prb, csq, B “ rfpbq, cs “ fprb, csq and C “ pg´1pcq, fpbqq “ rb, cszpA Y Bq.
Consider x P Γ̃ with x ‰ b and x R C. Consider a reduced word cncn´1 . . . c1 with ci P tf˘1, g˘1u
that describes a path in Γ̃ from b to x. In other words cncn´1 . . . c1pbq “ x and the su�xes of that
word satisfy cici´1 . . . c1pbq P Γ̃ for every i ď n. The fact that the word is reduced means that
ci ‰ c´1

i`1 for every i. We claim that if x P A, this word ends with g´1 “ cn, and if x P B, cn “ f .
We prove the latter statement by induction on the length of the word n. If a word of length

one, it is g since f �xes b and since g´1pbq R rb, cs. As gpbq P B this gives the base for the induction.
Assume that the result is true for any reduced word of length strictly less than n whose

su�xes, when applied to b, stay in rb, cs. We will now prove it for x “ cncn´1 . . . c1pbq. We denote
y “ cn´1cn´2 . . . c1pbq the point just before x in that path. We �rst consider the case x P B (as we
will see from the proof, the other case is equivalent). We distinguish three cases: y P A, y P B and
y P C.

If y P A, by induction hypothesis we have cn´1 “ g´1. As the word is reduced we thus have
cn ‰ g. However, from y P A and x P B we have y ă x. Therefore, cn R tf´1, g´1u, and the only
possibility left is cn “ f .

If y P B, by induction hypothesis we have cn´1 “ f . Therefore, as the word is reduced,
cn ‰ f´1. From g´1pcq ă fpbq it follows that gpBqX rb, cs “ H. As x P B, this implies that cn ‰ g.
Similarly, g´1pBq Ă A, therefore cn ‰ g´1. The only possibility left is cn “ f .

If y P C, consider the point y1 “ cn´2 . . . c1pbq. If y1 P A, by induction hypothesis cn´2 “ g´1.
Then cn´1 ‰ g. As y ą y1, this implies that cn´1 “ f . However, gpAq Ă B, which is a contradiction.
In a similar way, we obtain a contradiction for y1 P B. However, both f´1pCq and gpCq are outside
rb, cs, while fpCq Ă B and g´1pCq Ă A. Therefore the case y P C is impossible by induction
hypotheses on cn´2 . . . c1.

This completes the induction. Remark that we also obtained Γ̃X C “ H, so the result holds
for all points of Γ̃. In particular, if two paths in Γ̃ described by reduced words arrive at the same
point, the last letter in those words is the same, which implies that Γ̃ is a tree. Remark also that
the result implies that c R Γ̃ as c P B and f´1pcq “ c.

Moreover, for a vertex x P A, we have that fpxq, gpxq and g´1pxq also belong to Γ̃. Similarly,
for x P B, g´1pxq, fpxq and f´1pxq are in Γ̃. Therefore every vertex aside from b has three di�erent
neighbours. The simple walk on Γ̃ is thus transient.

By the comparison lemma by Baldi-Lohou�e-Peyri�ere (Lemma 4.3), this implies transience on
the Schreier graph of s for any measure on G such that hs and h̄s are in the semigroup generated
by the support of the measure. If the support of a given measure generates G as a semigroup,
conditions piq and piiiq in Lemma 4.1 are then automatically satis�ed. In particular, any measure
µ on G that generates it as a semigroup and such that there exists s for which supppµq X pGzHsq
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is �nite has a non-trivial Poisson boundary.
In the proof of Lemma 5.1 we obtained a description of the graph of as, which is similar to

the one by Savchuk [45] in the case of the dyadic action:

Remark 5.2. Consider two homeomorphisms f and g of R the supports of which are supppfq “ pa, cq
and supppgq “ pb, dq with a ă b ă c ă d. Denote H the group generated by f and g. Then the
Schreier graph of H on the orbit of b is described in Figure 3 (solid lines are labelled by f and
dashed lines by g).

Figure 3: Schreier graph of as

b

Proof. In the proof of Lemma 5.1 we have shown that for every vertex x P Γ̃ that is not b, x has
exactly three di�erent neighbours in Γ̃. We also proved that Γ̃ is a tree. It is therefore a binary
tree. Furthermore, if x P A, it is equal to g´1pyq where y is closer to b than x (in the graph), and if
x P B, x “ fpyq where y is again closer to b. We think of y as the parent of x. Then every vertex x
has two children: left child g´1pxq and right child fpxq. Furthermore, if x is a left child, x P A and
f´1pxq R Γ̃. Equivalently, if x is a right child, gpxq R Γ̃.

Compare to the Schreier graph of the dyadic action as described by Savchuk [45, Proposi-
tion 1](see Figure 4).

Figure 4: Schreier graph of the dyadic action of F for the standard generators
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6 Schreier graphs of �nitely generated subgroups of HpZq and rG
We will build on the result from Remark 5.2. In a more general case, the comparison lemma by
Baldi-Lohou�e-Peyri�ere (Lemma 4.3) implies that the existence of a regular subtree (like Γ̃) is enough
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to ensure transience on the Schreier graph. To obtain such a tree, we only need the assumptions of
the remark inside the closed interval rb, cs. We will now prove a lemma that ensures transience while
allowing the graph to be more complicated outside rb, cs. This will help us understand subgroups
of G for which the supports of their generators are not necessarily single intervals.

Lemma 6.1. Let f, g be homeomorphisms on R and assume that there exist b ă c such that gpbq “ b,
fpcq “ c, pb, cs Ă supppgq and rb, cq Ă supppfq. Assume also that there exists s P R with s ď b such
that for some n P Z, fnpsq P rb, cs. Let H be the subgroup of the group of homeomorphisms on R
generated by f and g. Then the simple walk of H on the Schreier graph Γ of H on the orbit s is

transient.

Proof. Without loss of generality, fpxq ą x and gpxq ą x for x P pb, cq (and the end point that they
do not �x). In that case clearly n ě 0. We will apply the comparison lemma by Baldi-Lohou�e-
Peyri�ere (Lemma 4.3) with P1 de�ned on Γ as the kernel of the simple random walk of H on Γ. In
other words, P1px, fpxqq “ P1px, f´1pxqq “ P1px, gpxqq “ P1px, g´1pxqq “ 1

4 for every x P Γ. Let us
now de�ne P2. Let a be the largest �xed point of f that is smaller than b, and d the smallest �xed
point of g that is larger than c. For x P pa, bq we de�ne npxq “ minpn|fnpxq P rb, csq. Similarly, we
de�ne for x P pc, dq, mpxq “ minpm|g´m P rb, csq. We de�ne

P2px, fpxqq “

$
’’’’&
’’’’%

1
4 x P rb, cs
1
4 x P pa, bq and npxq is odd
3
4 x P pa, bq and npxq is even
0 otherwise.

P2px, f´1pxqq “

$
’’’’&
’’’’%

1
4 x P rb, cs
3
4 x P pa, bq and npxq is odd
1
4 x P pa, bq and npxq is even
0 otherwise.

P2px, gpxqq “

$
’’’’&
’’’’%

1
4 x P rb, cs
3
4 x P pc, dq and mpxq is odd
1
4 x P pc, dq and mpxq is even
0 otherwise.

P2px, g´1pxqq “

$
’’’’&
’’’’%

1
4 x P rb, cs
1
4 x P pc, dq and mpxq is odd
3
4 x P pc, dq and mpxq is even
0 otherwise.

Of course, we have P2px, yq “ 0 otherwise. This clearly de�nes a stochastic kernel (as the
sum of probabilities at each x is 1), and it follows directly from the de�nition that it is symmetric.
It is therefore doubly stochastic and symmetric.

We now check that it is transient similarly to Lemma 5.1. Indeed, take a point x P rfpbq, cs
(respectively x P rb, g´1pcqs). Consider the subgraph Γ̃pxq of the vertices of the form cncn´1 . . . c1pxq
with cici´1 . . . c1pxq P rb, cs for every i and c1 P tf´1, g´1u (respectively c1 P tg, fu). Equivalently
to Lemma 5.1, Γ̃pxq is a binary tree. Moreover, the graph Γ̄pxq de�ned by the vertices of the form
c̃npyq P Γ with c̃ P tg, f´1u, n P N and y P Γ̃pxq is equivalent to the one in Lemma 5.1. In particular,
the simple random walk on it is transient. Take any y P Γ X pa, dq. Then either fnpyq P rfpbq, cs
for some n, or g´n P rb, g´1pcqs. In either case, there is x such that y belongs to Γ̄pxq. By the
comparison lemma by Baldi-Lohou�e-Peyri�ere (Lemma 4.3), we have

ř
nPNxPn2 δy, δyy ă 8. Therefore

P2 is transient. We apply Lemma 4.3 again for P1 ě 1
3P2, which concludes the proof.

Remark that with this result we can apply the comparison lemma by Baldi-Lohou�e-Peyri�ere
(Lemma 4.3) to obtain transience for a random walk induced by a measure on a subgroup of the
piecewise PSL2pZq group rG (see De�nition 2.1.2), the support of which contains two such elements
and generates that subgroup as a semi-group.

For the sake of completeness, we will also consider amenability of Schreier graphs of subgroups
of rG. A locally �nite graph is called amenable if for every ε there exists a �nite set of vertices S
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such that |BS|{|S| ă ε where BS is the set of vertices adjacent to S. This closely mirrors Følner's
criterion for amenability of groups. In particular, a �nitely generated group is amenable if and
only if its Cayley graph is. In his article, Savchuk [45] shows that the Schreier graph of the dyadic
action of Thompson's group F is amenable. He also mentions that it was already noted in private
communication between Monod and Glasner. The amenability of the graph comes from the fact
that sets with small boundary can be found in the rays (see Figure 4). We will prove that for �nitely
generated subgroups of rG we can �nd sets quasi-isometric to rays.

Remark 6.2. Consider a point s P R and a �nitely generated subgroup H of the piecewise PSL2pZq
group rG (see De�nition 2.1.2). Let a “ suppHsq. Let S be a �nite generating set and consider the
Schreier graph Γ de�ned by the action of H on Hs. Then there is b ă a such that the restriction
of Γ to pb, aq is a union of subgraphs quasi-isometric to rays.

Proof. As all elements of H are continuous (when seen as functions on R), they all �x a. Therefore
they admit left germs at a. By de�nition, the germs belong to the stabiliser Sta of a in PSL2pZq.

By Lemma 3.1.3, Sta is cyclic. Let h P PSL2pZq be a generator of Sta. Then the left germ
at a of any element si P S is equal to hni for some ni P Z. Up to replacing h with hGCDptni:siPSuq,
we can assume that there exists g P H such that the left germ at a of g is h. Let pb, aq be a small
enough left neighbourhood such that the restrictions of all elements of S Y tgu to pb, aq are equal
to their left germs at a. For example, one can choose b to be the largest break point of an element
of S Y tgu that is smaller than a.

Consider the following equivalence relation on Hs X pb, aq: x „ y if and only if there exists
n P Z such that hnpxq “ y. As the restriction of h to pb, aq is an increasing function, an equivalence
class is of the form phnpxqqnPN for some x P pb, aq. We will prove that this set is quasi-isometric to a
ray (when seen as a subgraph of Γ). It is by de�nition of b preserved by elements of S. Furthermore,
the graph distance d is bilipschitz to the standard distance d1 on N. Indeed, on one hand, we have
d ą 1

maxp|ni|:siPSqd
1. On the other hand, d ă |g|d1 where |g| is the word length of g. This proves the

result.

This implies:

Remark 6.3. Consider a point s P R and a �nitely generated subgroup H ă rG. The Schreier graph
de�ned by the action of H on Hs is amenable.

As mentioned in the introduction, the result of Juschenko and Zheng holds true not only for
the Schreier graph of Thompson's group F , but also for the Schreier graphs of �nitely generated
subgroups of rG:
Remark 6.4. Consider a point s P R and a �nitely generated subgroup H ă rG. There is a non-
degenerate measure such that the induced random walk on Hs has trivial Poisson boundary.

This follows from the results of a recent paper by Schneider and Thom [46, Section 6]. We will
adapt their result on Thompson's group F . In that section, they consider a topological subgroup
of SympXq for a countable set X. If the action is strongly transitive, Corollary 6.2(3) states that
the subgroup is amenable (as a topological group, with the induced topology from SympXq) if
and only if for any n, there is a non-degenerate probability measure such that the induced walk
on n-element subsets of X has trivial Poisson boundary. The considered action of F is strongly
transitive. It also makes F a subgroup of the group of order-preserving automorphisms of the
dyadic numbers, which we will denote AutpZr12 s,ďq. The latter has been proven to be (extremely)
amenable as a topological group by Pestov [43]. A more detailed presentation of extreme amenability
can be found in Kechris-Pestov-Todorcevic [28], where they provide the theory allowing to obtain
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extremely amenable groups from structural Ramsey theory. In particular, the extreme amenability
of AutpZr12 s,ďq is shown [28, 6(A)(iv)] to follow from the classical theorem of Ramsey.

Schneider and Thom thus obtain that for any n, there is a non-degenerate probability measure
on F such that the induced random walk on n-element sets of dyadic numbers has trivial boundary.
It is worth noting that this result extends previous work by Juschenko [20], who proved it for n “ 2.
Schneider and Thom also point out that since there is a free non-abelian group that is a subgroup
of AutpZr12 s,ďq, and that the latter acts strongly transitively, AutpZr12 s,ďq provides an example of
an action of a non-amenable group (in the discrete sense of amenability) such that for every n there
is a measure with trivial boundary of the walk on n-element subsets, which con�rms Juschenko's
expectations.

For H ă rG, its action on Hs presents an embedding into AutpHs,ďq. Applying [46, Corol-
lary 6.2(1)], Remark 6.4 follows. Notice that the remark only treats the case n “ 1. To obtain the
result for n-element subsets we would need to prove strong transitivity.

7 Convergence conditions based on expected number of break points

The aim of this section is to describe su�cient conditions for convergence similar to Theorem 4.1
that do not assume leaving Cµ (which is potentially in�nite). The ideas presented are similar
to the arguments used in studies of measures with �nite �rst moment on wreath products (see
Kaimanovich [24, Theorem 3.3], Erschler [15, Lemma 1.1]). Consider the piecewise PSL2pZq group
rG (see De�nition 2.1.2) and a measure µ on it. We think of the measure as something that could
be positive on all points of rG. Fix s P PZ Y Q and denote, for g P rG, Ag “ supppCgq (for s P Q,
see discussion after De�nition3.2.1 and after the proof of Lemma 3.1.4). Take x P Gs and consider
a random walk pgnqnPN with increments hn, that is gn`1 “ hngn. Then by (4),

Cgnpxq ‰ Cgn`1pxq ðñ gnpxq P Ahn .
In other words, Cgnpxq converges if and only if gnpxq P Ahn only for a �nite number of values

of n. For a �xed n, the probability that gnpxq belongs to Ahn is

xp˚nδx,
ÿ

hP rG
µphqχAh

y

where p is the induced kernel on Gs. Taking the sum over n we get:

Lemma 7.1. Fix o P Gs. For a random walk gn on rG with law µ, the value Cgnpoq converges with
probability 1 if and only if

ÿ

nPN
xp˚nδo,

ÿ

hP rG
µphqχAh

y ă 8

where p is the induced kernel on Gs.

We de�ne fµ as

fµ “
ÿ

hP rG
µphqχsupppChq (5)

and show that it su�ces for fµ to be l1 and µ transient :
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Lemma 7.2. Let s P PZ YQ be �xed. Take a measure µ on rG such that the induced random walk

on the Schreier graph on Gs is transient and fµ P l1pGsq (as de�ned in (5)). Then for a random

walk gn on rG with law µ, the associated con�guration Cgn converges pointwise with probability 1.

Remark in particular that ErBrs ă 8 implies fµ P l1p rGq, where Brpgq is the number of break
points of g. Indeed, for any �xed s, }fµ}1 is the expected number of break points inside the orbit
Gs, which is smaller than the total expected number of break points. This is, of course, also true
for measures on HpZq as HpZq ď rG.

Proof. Fix a point o in the Schreier graph on Gs. We denote by p the induced kernel on Gs and
write f “ fµ. We have

ÿ

nPN
xp˚nδo, fy “

ÿ

nPN

ÿ

xPGs
p˚npo, xqfpxq “

ÿ

xPGs
fpxq

ÿ

nPN
p˚npo, xq (6)

where we will have the right to interchange the order of summation if we prove that the right-
hand side is �nite. We write p˚npo, xq “ p̌˚npx, oq where p̌ is the inverse kernel of p. Let P̌ px, yq
be the probability that a random walk (with law p̌) starting at x visits y at least once. Thenř
nPN p̌˚npx, yq “ P̌ px, yqřnPN p̌˚npy, yq. Indeed,

ř
nPN p̌˚npx, yq is the expected number of visits of

y of a walk starting at x and random walk that starts from x and visits y exactly k times is the
same as the concatenation of a walk that goes from x to y and a walk that starts from y and visits
it k times. Thus

ÿ

nPN
p˚npo, xq “

ÿ

nPN
p̌˚npx, oq “ P̌ px, oq

ÿ

nPN
p̌˚npo, oq ď

ÿ

nPN
p̌˚npo, oq. (7)

Then if we denote cpp, oq “ ř
nPN p˚npo, oq,

ÿ

xPGs
fpxq

ÿ

nPN
p˚npo, xq ď cpp, oq}f}1 ă 8. (8)

Applying Lemma 7.1 we obtain the result.

Combining this result with the result of Lemma 6.1 which gives transience of the induced
random walk on Gs under certain conditions, we obtain:

Lemma 7.3. Consider the piecewise PSL2pZq group rG (see De�nition 2.1.2). Let H be a subgroup

of rG. Assume that there exist b ă c such that gpbq “ b, fpcq “ c, pb, cs Ă supppgq and rb, cq Ă
supppfq for some f, g P H (see Figure 5 on page 21). Assume also that there exists s P PZ Y Q
and εs ą 0 with s ď b such that for some n P Z, fnpsq P rb, cs, and also gps ´ εq “ s ´ ε and

gps ` εq ‰ s ` ε for every 0 ă ε ď εs. Then for any µ on H with �nite �rst break moment

(ErBrs ă 8) such that supppµq generates H as a semigroup, the Poisson boundary of µ on H is

non-trivial.

Proof. By Lemma 6.1, the simple random walk on the Schirer graph of s by xf, gy is transient.
By the comparison lemma by Baldi-Lohou�e-Peyri�ere (Lemma 4.3), as the support of µ generates
H as a semigroup, the random walk by µ on the Schreier graph of s is then transient. Applying
Lemma 7.2, the associated con�gurations converge as µ has �nite �rst break moment. However, by
hypothesis on s, gpsq “ s and Cgpsq ‰ 0. Therefore, as g P H, the limit con�guration cannot be
singular. Thus the Poisson boundary of µ on H is non-trivial.

For �nitely generated subgroups of rG, from Lemma 7.2 we have:
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Remark 7.4. The amount of break points is subadditive in relation to multiplication. In particular,
if a measure µ has �nite �rst moment, then it has �nite �rst break moment.

Corollary 7.5. Consider a measure µ on rG, the support of which generates a �nitely generated

subgroup, and such that µ has a �nite �rst moment on that subgroup. Assume that there exists

s P PZ such that the random walk on the Schreier graph on Gs of this subgroup is transient. Then,

for almost all random walks on rG with law µ, the associated con�guration converges pointwise.

Proof. Follows from Remark 7.4 and Lemma 7.2.

In such cases it is enough to prove that the associated limit con�guration is not always the
same, which can require case-speci�c arguments. We already have it in the case of Thompson's
group:

Proof of Corollary 1.3. Fix s P PZ and consider the action as of Thompson's group F on R as
de�ned in Section 5. Take a measure µ on F that generates it as a semigroup. From Lemma 5.1
and the comparison lemma by Baldi-Lohou�e-Peyri�ere (Lemma 4.3) the walk µ induces on the orbit
of s is transient. Applying Corollary 7.5 this implies that the associated con�guration stabilises,
and by Lemma 3.2.3, it cannot always converge towards the same point. Therefore the Poisson
boundary of µ is not trivial.

We remark that arguments similar to the ones in this section can also be made for the action
of Thompson's group considered in Kaimanovich's article [26].

In a more general case, we can use the stronger result by Varopoulos of the comparison
Lemma 4.3 in order to prove that if the transient walk diverges quickly enough, we can also have
the result for fµ P l2pGsq (and not necessarily in l1):

Lemma 7.6. Fix s P PZ. Consider a measure µ0 such that f̃ “ fµ0 P l2pGsq. Consider λ on Hs

such that
ř
nPNxλ˚nf̃ , f̃y ă 8. Let µ “ ελ` p1´ εqµ0 with 0 ă ε ă 1. Then for almost all random

walks on G with law µ, the associated con�guration converges pointwise.

Proof. Clearly, fµ “ p1´ εqf̃ . Then by the comparison Lemma 4.3 we get:

ÿ

nPN
xµ˚nfµ, fµy ă 1

εp1´ εq2
ÿ

nPN
xλ˚nf̃ , f̃y ă 8.

Denote f “ fµ. Consider x P PZ such that it is possible for the value of the associ-
ated con�guration at x to change. In other words, there is n0 P N and y P PZ such that x P
supppµ˚n0qy and fpyq ą 0. Denote by p the probability to reach x from y. Then

ř
nPNxµ˚nδy, fy ą

p
ř
nPNxµ˚n`n0δx, fy. In particular, if the �rst is �nite, so is the second. However, we clearly haveř

nPNxµ˚nδy, fy ă 1
fpyq

ř
nPNxµ˚nf, fy which concludes the proof.

In particular, if for any s all associated con�gurations cannot be stable by all the elements of
xsupppµqy, we obtain a non-trivial boundary.

Corollary 7.7. Fix s P PZ. Consider a measure µ0 such that hs P supppµ0q˚n0 for some n0 and

f̃ “ fµ0 P l2pGsq. Consider λ on Hs such that
ř
nPNxλ˚nf̃ , f̃y ă 8. Let µ “ ελ ` p1 ´ εqµ0 with

0 ă ε ă 1. Then the Poisson boundary of µ on the subgroup generated by its support is non-trivial.

Proof. Follows from Lemma 7.6 and Lemma 3.2.3.

Remark that there always exists a symmetric measure λ satisfying those assumptions as
A Ă Hs (A was de�ned in (1)).
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Figure 5: Graphs of f and g and positions of b
and c
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Figure 6: Graphs of f and g in pa, b1q
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8 An algebraic lemma and proof of the main result

Consider the piecewise PSL2pZq group rG (see De�nition 2.1.2). Take a subgroup H of rG. In
Lemma 7.3 we proved that if there are f, g P H and b, c, s P R that satisfy certain assumptions, for
every measure µ onH the support of which generatesH as a semigroup and that has �nite �rst break
moment ErBrs, pH,µq has non-trivial Poisson boundary. To prove the main result (Theorem 1.2)
we will study subgroups that do not contain elements satisfying those assumptions.

Lemma 8.1. Let H “ xh1, . . . , hky be a �nitely generated subgroup of rG. Then either H is solvable,

or the assumptions of Lemma 7.3 are satis�ed for some f, g P H, b, c, s P R.
We recall that for f P rG, and a, b P R such that fpaq “ a and fpbq “ b, we de�ned (see

De�nition 2.1.3) fæpa,bq P rG by fæpa,bqpxq “ fpxq for x P pa, bq and x otherwise.

Proof. We �rst check that with the appropriate assumptions on pf, g, b, cq, s always exists:
Lemma 8.2. Let H be a subgroup of rG. Assume that there exist b ă c such that gpbq “ b, fpcq “ c,
pb, cs Ă supppgq and rb, cq Ă supppfq for some f, g P H. Then there exist f 1, g1, b1, c1 and s that

satisfy the assumptions of Lemma 7.3.

The assumptions of the lemma are illustrated in Figure 5. Recall that we de�ned supppfq “
tx P R : fpxq ‰ xu.
Proof. Without loss of generality assume that b is minimal among all b for which there exists c such
that either pf, g, b, cq or pg, f, b, cq satisfy the assumptions of this lemma. We can assume without
loss of generality that fpxq ą x and gpxq ą x for x P pb, cq (otherwise, we can replace either or both
with their inverse). Let a be the largest �xed point of f that is smaller than b.

By minimality of b we clearly have that gpaq “ a. The stabiliser Sta of a in PSL2pZq is
cyclic by Lemma 3.1.3. Therefore there exist k and l such that fkpxq “ glpxq for x P pa, a ` εq
for some ε ą 0. Take pf 1, g1q “ pf, f´kglq. By our assumption, fk and gl are strictly greater then
the identity function in pb, cq. As they are continuous and each �xes an end of the interval, by
the mean values theorem there exists b1 P pb, cq such that fkpb1q “ glpb1q. Then pf 1, g1q and pb1, cq
satisfy the assumptions of this lemma. Furthermore, f´kgl is the identity in a small enough right
neighbourhood of a, which implies that there exists an element s that satis�es the assumptions of
Lemma 7.3.
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We now assume that the assumptions of Lemma 7.3, and therefore also the assumptions of
Lemma 8.2, are not satis�ed by any couple of elements in H. We will prove that H is solvable. For
any element in g P rG, its support supppgq is a �nite union of (not necessarily �nite) open intervals.
The intervals in the support of hi we denote Iij “ paji , bji q for j ă ri where ri is the number of
intervals in the support of hi. In terms of those intervals, the negation of Lemma 8.2 means that
for every pi, jq and pi1, j1q, either Iij X Ii1j1 “ H, or Iij Ă Ii

1
j1 , or I

i1
j1 Ă Iij . We further check that if the

inclusion is strict, it must be strict at both extremities. Speci�cally:

Lemma 8.3. Let H be a subgroup of rG. Assume that there exist a ă b ă b1 P RY t´8u such that

fpaq “ gpaq “ a, fpbq “ b, gpb1q “ b1, pa, bq Ă supppfq and pa, b1q Ă supppgq for some f, g P H (see

Figure 6). Then the assumptions of Lemma 8.2 are satis�ed by some elements of the group.

Proof. In a small enough right neighbourhood of a there are no break points of f and g. Let c be
a point in that neighbourhood. Clearly, a ă c ă b. Without loss of generality, we can assume that
fpxq ą x for x P pa, bq, and idem for g (otherwise, we can replace them with their inverse). For some
k P N, f´kpbq ă c. Denote g1 “ f´kgfk. Consider the elements g1 and g´1g1. As the stabiliser of a in
PSL2pZq is cyclic (by Lemma 3.1.3), g´1g1pxq “ x for x P pa, f´kpcqq. However, g´1g1pxq “ g´1pxq
for x P pf´kpbq, bq, and in particular g´1g1pxq ‰ x in that interval. Let c1 be the largest �xed
point of g´1g1 that is smaller than f´kpbq. Consider now g1. It is the conjugate of g, therefore it is
di�erent from the identity in pa, f´kpbqq and �xes f´kpbq ă c. Clearly, c1 ă f´kpbq. Then g1, g´1g1
and c1, f´kpbq satisfy the assumptions of Lemma 8.2. Observe that the same arguments can be used
for two elements with supports pa, bq and pa1, bq with a ‰ a1.

Consider the natural extension of the action of rG on R Y t`8,´8u, which is that every
element of rG �xes both ´8 and `8. We make the convention that `8 is considered to be a break
point of f P rG if and only if for everyM P R there is x ąM such that fpxq ‰ x (and idem for ´8).
In other words, if the support of an element is equal to an interval pa, bq, a and b are break points
even if one or both are in�nite. We now prove that H is solvable by induction on the number of
di�erent orbits of H on RY t˘8u that contain non-trivial break points of elements of H. Remark
that the number of orbits of H that contain non-trivial break points of elements of H is the same
as the number of orbits that contain non-trivial break points of h1, . . . , hk. In particular, it is �nite.

Consider all maximal (for inclusion) intervals Iij over all couples pi, jq. We denote them

I1, I2, . . . , In. By our hypothesis we have that they do not intersect each other. We denote hji “ hiæIj
and Hj “ xhj1, hj2, . . . , hjky for every j ă n. As the intervals Ij do not intersect each other, H is a
subgroup of the Cartesian product of Hj :

H ď
nź

j“1

Hj . (9)

Moreover, for every j, the amount of orbits with non-trivial break points of Hj is not greater
than that of H. Indeed, the orbits with break points of Hj inside Ij coincide with those of H, and
it has only two other orbits containing break points, which are the singletons containing the end
points of Ij . We just need to prove that H has at least two other orbits containing non-trivial break

points. If Ij “ Ij
1
i1 , then the supremum and in�mum of the support of hi1 are break points, and by

de�nition of Ij their orbits by H do not intersect the interior of Ij . The convention we chose assures
that our arguments are also correct if one or both of the end points is in�nite. It is thus su�cient
to prove the induction step for Hj for every j. Therefore without loss of generality we can assume
n “ 1. Remark that in this case the end points of I1 are both non-trivial break points, and both
clearly have trivial orbits.
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We denote pa, bq “ I “ I1. Consider the germs gi P Sta of hi at a right neighbourhood of a.
As Sta is cyclic, there exist mi P Z such that

ś
i g
mi
i generates a subgroup of Sta that contains gi

for all i. Speci�cally, the image in Z of this product is the greatest common divisor of the images
in Z of gi. We denote h “ś

i h
mi
i and let, for every i, ni satisfy pśi g

mi
i qni “ gi. For every i ď k,

we consider h1i “ hih
´ni .

Clearly,H “ xh, h11, h12, . . . , h1ky, and there exists ε such that for every i, suppph1iq Ă pa`ε, b´εq
(as the assumptions of Lemma 8.3 are not satis�ed by h, h1i). Consider the set of h´lh1ihl for
i ă k, l P Z and their supports. They are all elements of H. Furthermore, there is a power n such
that hnpa ` εq ą b ´ ε. Therefore, for every point x P pa, bq, the number of elements of that set
that contain x in their support is �nite. Considering the intervals that de�ne those supports, we
can therefore choose a maximal one (for the inclusion). Let x0 be the lower bound of a maximal
interval. By our assumption, x0 is then not contained in the support of any of those elements, and
neither is xl “ hlpx0q for l P Z. We denote h1ji “ hjh1ih´jæpx0, x1q. For i ă k, let Ji be the set of

j P Z such that h1ji ‰ Id. Then H is a subgroup of

C
h,

ď

iăk

ď

jPJi
h1ji

G
– xhy o

Cď

iăk

ď

jPJi
h1ji

G
. (10)

For a group F , Z o F denotes the wreath product of Z on F . It is a group, the elements of
which are pairs pn, fq with n P Z and f P ś

kPZ F with �nite support. The group multiplication
is de�ned as pn, fqpn1, f 1q “ pn ` n1, Tn1f ` f 1q, where Tn1fpkq “ fpk ´ n1q. It is a well known
property of wreath products that if F is solvable, so is Z o F .

Denote H 1 “ xŤiăk
Ť
jPJi h

1j
i y. The non-trivial break points and supports of h1ji are contained

in px0, x1q, and they �x that interval. Therefore the orbits that contain those break points are the
same in relation to xh,H 1y and to H 1. On the other hand, xh,H 1y and H act the same way locally,
which means that they have the same orbits. Those two facts imply that H 1 has at least two less
orbits containing non-trivial break points than H (as it does not have non-trivial break points in
the orbits of the end points of I). That group also does not contain elements that satisfy the
assumptions of Lemma 8.2. Indeed, assume that there are two words on

Ť
iăk

Ť
jPJi h

1j
i and a, b P R

that satisfy those assumptions. Their supports are also contained in px0, x1q, therefore so are a and
b. Then the same words in

Ť
iăk

Ť
jPJi h

1
i are equal inside pa, bq, and they satisfy the conditions of

Lemma 8.2. However, h1i are elements of H and this is contradictory to our assumptions.
This provides the induction step. The induction basis is the trivial group, which is solvable.

Therefore H is solvable.

We can now prove the main result, that is that for any subgroup H of HpZq which is not
locally solvable and any measure µ on H such that the support of µ generates H as a semigroup
and has �nite �rst break moment ErBrs, the Poisson boundary of pH,µq is non-trivial.
Proof of Theorem 1.2. Fix H and take µ on H with �nite �rst break moment and the support of
which generates H as a semigroup. We distinguish two cases.

Assume �rst that there exist f, g P H and b, c, s P R that satisfy the assumptions of Lemma 7.3.
By the result of the lemma, the Poisson boundary of pH,µq is non-trivial.

We now assume that no such f, g, b, c, s exist and will prove that H is locally solvable. Any
�nitely generated subgroup rH of H clearly also does not contain such f and g for any b, c, s P R.
Furthermore, HpZq is a subgroup of the piecewise PSL2pZq group rG (see De�nition 2.1.2), and thus
rH is a subgroup of rG. Therefore by Lemma 8.1 we obtain that rH is solvable, which proves that H
is locally solvable.
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9 A remark on the case of �nite 1´ ε moment

Remark that in the proof of Lemma 8.1, for a �nitely generated subgroup that does not satisfy
the assumptions of Lemma 7.3 we obtained more than it being solvable. If the subgroup is also
non-abelian, we have proven that it contains a wreath product of Z with another subgroup (see
(10)). In particular, it is not virtually nilpotent, which implies (as it is �nitely generated) that
there exists a measure on it with non-trivial boundary by a recent result of Frisch-Hartman-Tamuz-
Vahidi-Ferdowski [16]. Furthermore, it is known that on the wreath products Z o Z it is possible to
obtain a measure with �nite 1 ´ ε moment and non-trivial Poisson boundary for every ε ą 0 (see
Lemma 9.2 and discussion before and after it). The same arguments can be used in rG:

Lemma 9.1. For every �nitely generated subgroup H “ xh1, . . . , hky of rG that is not abelian and

every ε ą 0 there exists a symmetric non-degenerate measure µ on H with non-trivial Poisson

boundary such that
ş
H |g|1´εdµpgq ă 8, where |g| is the word length of g.

We recall that every measure on an abelian group has trivial Poisson boundary (see Black-
well [7], Choquet-Deny [10]).

Proof. As there is always a non-degenerate symmetric measure with �nite �rst moment, we can
assume that the assumptions of Lemma 7.3 are not satis�ed in H. We will use the results on the
structure of H seen in the proof of Lemma 8.1. It is shown (see (9)) that H is a subgroup of a
Cartesian product

śn
j“1Hj . Speci�cally, there exist disjoint intervals I1, I2, . . . , In such that the

supports of elements of H are included in the union of those intervals. Taking hji “ hiæIj to be the
restriction on one of those intervals (as de�ned in De�nition 2.1.3), the group Hj is then equal to

xhj1, hj2, . . . , hjky. For any j, consider the composition of the projection of
śn
j“1Hj onto Hj and the

inclusion of H in
śn
j“1Hj . Then Hj is the quotient of

śn
j“1Hj by the kernel of this composition,

which is equal to th Pśn
j“1Hj , hæIj ” 0u.

We can therefore separately de�ne measures on Hj and on the kernel, and the Poisson bound-
ary of their sum would have the Poisson boundary of the measure on Hj as a quotient. In particular,
it su�ces to show that for some j we can construct a measure on Hj with non-trivial boundary
satisfying the conditions of the lemma. As H is non-abelian, so is at least one Hj . Without loss of
generality, let that be H1. In the proof of Lemma 8.1 we have shown (see (10)) that in H1 there
are elements h1 and h11

j for j “ 1, 2, . . . , k such that H1 “ xh1, h11
1, h

11
2, . . . , h

11
ky and is isomorphic

to a subgroup of the wreath product of h1 on a group H 1 de�ned by the rest of the elements.
Remark that H1 not being abelian implies that H 1 is not trivial. Furthermore, by taking the group
morphism of H1 into Z oH 1, we see that the image of h1 is the generator p1, 0q of the active group,
while for every j, the image of h11

j is of the form p0, fjq where fj has �nite support. The following
result is essentially due to Kaimanovich and Vershik [27, Proposition 6.1],[22, Theorem 1.3], and
has been studied in a more general context by Bartholdi and Erschler [6]:

Lemma 9.2. Consider the wreath product Z o H 1 where H 1 is not trivial, and let µ be a measure

on it such that the projection of µ on Z gives a transient walk and the projection of µ on H 1Z is

�nitary and non-trivial. Then the Poisson boundary of µ is not trivial.

In the article of Kaimanovich and Vershik, it is assumed that the measure is �nitary, and
the acting group is Zk for k ě 3, which assures transience. The proof remains unchanged with our
assumptions. Remark that those results have also been generalised in the case of a measure with
�nite �rst moment that is transient on the active group, see Kaimanovich [24, Theorem 3.3],[25,
Theorem 3.6.6], Erschler [15, Lemma 1.1].
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Proof. Take a random walk pgnqnPN on Z o H 1 with law µ. Let p be the projection of the wreath
product onto the factor isomorphic to H 1 that has index 0 in H 1Z. By the assumptions of the
lemma, pphnq stabilises, and is not almost always the same. This provides a non-trivial quotient of
the Poisson boundary of µ.

All that is left is constructing a measure that veri�es the assumptions of Lemma 9.2. Consider
a symmetric measure µ1 on xh1y that has �nite 1 ´ ε moment and is transient. Let µ2 be de�ned
by being symmetric and by µ2ph11

jq “ 1
2k for every j. Then µ “ 1

2pµ1`µ2q is a measure on H1 with
non-trivial Poisson boundary.
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Abstract
We consider a transitive action of a finitely generated group G and the Schreier graph
Γ defined by this action for some fixed generating set. For a probability measure μ

on G with a finite first moment, we show that if the induced random walk is transient,
it converges towards the space of ends of Γ . As a corollary, we obtain that for a
probability measure with a finite first moment on Thompson’s group F , the support of
which generates F as a semigroup, the induced random walk on the dyadic numbers
has a non-trivial Poisson boundary. Some assumption on the moment of the measure
is necessary as follows from an example by Juschenko and Zheng.

Keywords Random walks on groups · Poisson boundary · Schreier graph ·
Thompson’s group F

Mathematics Subject Classification Primary classes: 05C81 · 60B15 · 60J50,
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1 Introduction

Consider a finitely generated group G acting on a space X (on the right). For a point
x ∈ X and a generating set S, the Schreier graph Γ = (xG, E) is the graph the vertex
set of which is the orbit xG of x , and the edges E are the couples of the form (y, y.s) for
y ∈ xG and s ∈ S. Throughout this article, we will assume the action to be transitive,
that is for every x , xG = X . We take a measure μ on G and will study for which
(G, Γ , μ) the induced random walk on Γ converges towards an end of the graph.

The author’s work is supported by the European Research Council grant GroIsRan.

B Bogdan Stankov
bogdan.stankov@ens.fr

1 Département de mathématiques et applications, École normale supérieure, CNRS, PSL Research
University, 75005 Paris, France

123

66



Journal of Theoretical Probability

We recall the definition of the end space. Consider an exhaustive increasing sequence
K1 ⊂ K2 ⊂ . . . of finite subsets of X . An end of Γ is a sequence U1 ⊇ U2 ⊇ . . .

where Un is an infinite connected component of the subgraph obtained by deleting
the vertices in Kn and adjacent edges. For more details, see Definition 2.1. Our main
result states:

Theorem 1.1 Consider a finitely generated group G acting transitively on a space X.
Fix a generating set S and let Γ = (X , E) be the associated Schreier graph. Let μ be
a measure on G with a finite first moment such that the induced random walk on Γ is
transient. Then, the random walk almost surely converges towards a (random) end of
the graph.

Notice that for measures with finite support, the result is straightforward. The result
is also already known in the case where the action of G on X is non-amenable (this
is a particular case of [20, Theorem 21.16], which we recall as Theorem 2.5), under
the condition of a finite first moment. An action is non-amenable when there is no
G-invariant mean on X . Kesten’s criterion [11] states that for any symmetric non-
degenerate measure on the group, the action is non-amenable if and only if the induced
random walk on X has probability of return to the origin that decreases exponentially
(see Bartholdi [2] for a survey on the amenability of group actions). The general case
of the cited [20, Theorem 21.16] does not assume that the random walk is induced
by a measure on a group. The result is no longer true if we assume neither that the
walk is induced by a measure on a group nor that the probability of return to the
origin decreases exponentially. We prove that in Proposition 2.6, where we construct
a Markov chain (X , P) that is transient, uniformly irreducible and has a uniform first
moment, but does not converge towards an end of Γ .

If the action is non-amenable, the random walk induced by any non-degenerate
measure is transient (see [20, Lemma 1.9]). In the general case, transience can some-
times be obtained from the graph geometry using a comparison Lemma 2.2 due to
Baldi–Lohoué–Peyrière [1]. Combining this lemma and the theorem, we obtain:

Corollary 1.2 Consider a finitely generated group G acting transitively on a space X.
Fix a generating set S and let Γ = (X , E) be the associated Schreier graph. Assume
that Γ is a transient graph. Then, for all measures μ on G with finite first moments
such that supp(μ) generates G as a semigroup, the induced random walk almost surely
converges towards an end of the graph.

We will also explain how this result can be applied to Thompson’s group F . Let us
recall the definition of this group. The set of dyadic rationalsZ[ 1

2 ] is the set of numbers
of the form a2b with a, b ∈ Z. Thompson’s group F is the group of orientation-
preserving piecewise linear self-isomorphisms of the closed unit interval with dyadic
slopes, with a finite number of break points, all break points being in Z[ 1

2 ]. It is a
finitely generated group with a canonical generating set (with two elements). See
Cannon–Floyd–Parry [3] or Meier’s book [13, Ch. 10] for details and properties.
Its amenability is a celebrated open question. It is well known that amenability is
equivalent to the existence of a non-degenerate measure with trivial Poisson boundary
(see Kaimanovich–Vershik [10], Rosenblatt [16]). The boundary of a random walk
induced by an action is a quotient of the boundary of the walk on the group.
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The Schreier graph on Z[ 1
2 ] (of a conjugate action of F) has been described by

Savchuk [17, Proposition 1]. It is a tree that can be understood as a combination of
a skeleton quasi-isometric to a binary tree, and rays attached at each point of the
skeleton (see Fig. 2). Understanding the geometry of the graph directly shows that it
is transient. Kaimanovich [9, Theorem 14] also proves this result without using the
geometry of the graph. Hence, by Corollary 1.2 and Lemma 4.2 we obtain

Corollary 1.3 Consider a measure on Thompson’s group F with a finite first moment,
the support of which generates F as a semigroup. Then, the induced random walk on
Z[ 1

2 ] has non-trivial Poisson boundary.

This extends the following previous results. Kaimanovich [9] and Mishchenko [14]
prove that the simple random walk on the Schreier graph given by that action has non-
trivial boundary. Kaimanovich [9, Section 6.A] further shows that it is non-trivial for
walks induced by measures with supports that are finite and generate F as a semigroup.
We have also shown [19] that for any measure with a finite first moment on F , the
support of which generates F as a semigroup, the walk on the group has non-trivial
Poisson boundary.

The result of the corollary is false without assuming a finite first moment. Juschenko
and Zheng [7] have proven that there exists a symmetric non-degenerate measure on
F such that the induced random walk has trivial Poisson boundary. If the trajectories
almost surely converge towards points on the end space, the end space endowed the
exit measure on it is a quotient of the Poisson boundary. However, the self-similarity
of the graph implies that the exit measure cannot be trivial, as we prove in Lemma 4.2.
Combining the result of Juschenko–Zheng with this lemma, we obtain:

Corollary 1.4 There exists a finitely generated group G, a space X and a symmetric
non-degenerate measure on G such that

– G acts amenably and transitively on X,
– the induced random walk on the Schreier graph is transient,
– the induced random walk on the Schreier graph does not converge towards an end

of the graph.

In particular, the measure described by Juschenko and Zheng [7, Theorem 3] provides
an example for the action of Thompson’s group F on Z[ 1

2 ].

Concerning Thompson’s group F , studying the Poisson boundary of random walks
on it has been highlighted as a possible approach to proving non-amenability in the
work of Kaimanovich. The results by him and Mischenko further suggested that one
could consider the boundary of induced random walks Z[ 1

2 ], but that was shown
impossible by the result of Juschenko–Zheng. In more recent results, Juschenko [6]
studied walks on the space of n-element subsets of Z[ 1

2 ] and gave a combinatorial
necessary and sufficient condition for the Poisson boundary of induced walks on that
space to be non-trivial for all non-degenerate measures. In that situation, the existence
of a measure with trivial boundary is due to Juschenko for n = 2 and to Schneider
and Thom [18] for a general n.
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2 Preliminaries

Consider a finitely generated group G acting transitively on a space X and a measure μ

on G. The random walk on G is defined by multiplication on the right. That is, the walk
with trajectories (gn) for n ∈ Nwhere gn+1 = gnhn and the increments hn are sampled
by μ. In other words, the random walk is defined by the kernel (g, h) �→ μ(g−1h).
The trajectory of the induced random walk on X starting at a point o is the image of
the trajectory of the walk on the group by the map:

(gn) �→ (o.gn).

Its kernel is P(x, y) = ∑
x .g=y μ(g). We now fix a generating set S of G

and consider the undirected graph Γ = (X , E) with vertices X and edges E =
{(x, x .s) for s ∈ S, x ∈ X}. We recall that this is called the Schreier graph, and that
it is connected as we assumed the action to be transitive. It is worth noting that the
directed version of the same definition is also referred to as the Schreier graph, and
that in the figures in this article, the edges will have an assigned direction for easier
visualisation. It is known that every connected regular graph of even degree is iso-
morphic to a Schreier graph. It was first proven by Gross [5] for finite graphs. For a
detailed proof of the infinite case, see [12, Theorem 3.2.5].

Definition 2.1 For a compact K ⊂ X denote by π0(X \ K ) the set of connected
components of X \K . There is a natural partial order defined by K1 ≤ K2 if and only if
K1 ⊆ K2. That order gives rise to a natural morphism π1,2 : π0(X\K2) �→ π0(X\K1)

which sends a connected component into the connected component of which it is a
subset. This forms an inverse system indexed by K ⊂ X (see [15, Section 3.1.2]). The
end space is then the inverse limit

lim←−
K⊂X

compact

π0(X \ K ) = {(xK ) ∈
∏

K⊂X
compact

π0(X \ K )|π1,2x2 = x1, K1 ⊂ K2}.

In our case, the end space can be described using an increasing exhaustive sequence
of finite sets Kn , as such sequences are cofinal in the set of all compact subsets. That
is, any compact set is included in Kn for n large enough.

We use the following comparison lemma by Baldi–Lohoué–Peyrière [1].

Lemma 2.2 (Comparison lemma) Let P1(x, y) and P2(x, y) be doubly stochastic ker-
nels on a countable set X and assume that P2 is symmetric. Assume that there exists
ε ≥ 0 such that

P1(x, y) ≥ εP2(x, y)

for any x, y. Then, if P2 is transient, then so is P1.

Here, doubly stochastic kernels means that the operators are reversible and the
inverse of each is also Markov. Equivalently, they preserve the counting measure;
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Fig. 1 A recurrent graph with infinitely many ends

it is worth noting that the result holds true more generally for operators with any
common stationary measure, see Kaimanovich [9, Section 3.C]; see also Woess [20,
Section 2.C,3.A]. For the walks considered in this article, it is direct to verify that
for all probability measures, p(x, y) = μ(x−1 y) is doubly stochastic (as the inverse
operator is defined by (x, y) �→ μ(y−1x)).

We recall that a random walk is called transient if, for any point, almost every
trajectory leaves that point after finite time. Otherwise, the walk is called recurrent and
there is a point that the walk almost surely visits an infinite amount of times. A graph
is called transient (recurrent) if the simple random walk on it is transient (recurrent).
The Green function G is defined by Gz(x, y) = ∑

n∈N p(n)(x, y)zn where p(n) is the
n-time transition probability of p. In other words, p(n)(x, y) is the probability that a
random walk starting in x is at y after n steps. We will write G(x, y) = G1(x, y). A
walk is transient if and only if G(x, x) < ∞ for all x ∈ X .

Remark that recurrent walks do not converge to the end space. However, it is possible
for a measure on a group to induce a transient walk even if the uniform measure is
recurrent, in which case we can apply Theorem 1.1. Here, we give an example of that
situation in which the graph has infinitely many ends.

Example 2.3 Consider the graph Ψ in Fig. 1. Consider the action of the free group
on two generators F2 on it where the first generator a sends each vertex to the right,
and the second generator b sends a vertex to the vertex above if possible, and to itself
otherwise. The graph is recurrent. Consider the measure μ(a) = 3

8 , μ(a−1) = 1
8 ,

μ(b) = μ(b−1) = 1
4 . It is transient and converges towards the ends defined by the

right-hand side rays.

If we do not require the measure on F2 to have a finite first moment, it can be
chosen symmetric, while the induced walk remains transient. This can be done on any
graph containing an infinite array, see [4, Lemma 7.1]. Furthermore, we can construct
recurrent graphs for which it is possible to have symmetric measures (on the acting
group) with finite first moments that induce transient walks:

Example 2.4 Consider the graph Ψ ′ obtained by Ψ by replacing the horizontal lines
withZ2 planes. It is a recurrent graph. Consider the free productZ∗Z2 with generators
a ∈ Z and b, c ∈ Z2. Consider its action on Ψ ′ where a moves a vertex to the vertex
above if possible, and to itself otherwise, and b and c act horizontally. There is a
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symmetric transient measure μ on Z2 with a finite first moment. Consider μ′ =
1
4 (δa + δa−1) + 1

2μ. It induces a transient walk on Ψ ′, which by Theorem 1.1 almost
surely converges to an element of end space.

Let us recall the exact statement of Theorem 21.16 from the book of Woess [20].
For a graph Γ = (X , E) and a Markov operator P on X , the theorem states:

Theorem 2.5 ([20, Theorem 21.16]) If (X , P) is uniformly irreducible and has a uni-
form first moment, and ρ(P) < 1, then the random walk defined by (X , P) converges
almost surely to a random end of Γ .

Let us define the concepts in the statement. The walk is uniformly irreducible if there
exists c > 0 and finite K ∈ N such that for all neighbouring vertices x and y, there
exists k ≤ K such that p(k)(x, y) ≥ c. The step distribution on a point x ∈ X is defined
asσx (n) = ∑

y:d(x,y)=n p(x, y). The step distributions are tight if there is a distribution
σ on N0, such that for all x and all n, the tails σx ([n,+∞)) are bounded by the tails of
σ . The walk has uniform first moment if the step distributions are tight with some σ that
has finite first moment. The spectral radius is ρ(P) = lim supn→∞ p(n)(x, y)1/n . (This
quantity does not depend on x and y.) It is straightforward to check that if ρ(P) < 1,
then the random walk is transient. Moreover, applying the definition for x = y we
see that ρ(P) < 1 if any only if the probability of return to the origin decreases
exponentially. We will show that the result of Theorem 2.5 is not true without the
assumption ρ(P) < 1. By sgn we denote the sign function on Z: sgn(z) = 1 if x ≥ 0
and sgn(x) = −1 if x < 0.

Proposition 2.6 1. There is a graph Γ = (X , E) and a Markov operator P on X such
that (X , P) is transient, uniformly irreducible and has a uniform first moment, but
the random walk defined by (X , P) does not converge almost surely to a random
end of Γ .

2. Consider the Markov chain (Z, Ppn ,εn ) which, given pn ≥ 0 and εn ≥ 0, is defined
as

P(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − pn) 1+εn
2 for y = sgn(x)(|x | + 1)

(1 − pn) 1−εn
2 for y = sgn(x)(|x | − 1)

pn for y = −x

0 otherwise.

There is a choice of pn ≥ 0 and εn ≥ 0 such that (Z, Ppn ,εn ) is transient, uniformly
irreducible, has uniform first moment and has an infinite expected number of steps
where the sign changes. In particular, it verifies the conditions of (1).

The exact values that appear in the proof are pn = 1
n2(ln n)2 and εn =

(n+1)(ln(n+1))2−n(ln n)2

(n+1)(ln(n+1))2+n(ln n)2 .

Proof We will find sufficient conditions on pn ≥ 0 and εn ≥ 0 under which (Z, Ppn ,εn )

verifies the conditions we seek, and then provide a choice that satisfies those conditions.
Specifically, the sufficient conditions are (1), (2), (3) and (4).

The tails σx ([n,+∞)) are bounded by the tail of the distribution σ on N0 defined
by σ(0) = σ(1) = 1, σ(2n) = pn for n ≥ 1 and σ(x) = 0 otherwise. The Markov
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chain (Z, Ppn ,εn ) has uniform first moment if and only if σ has finite first moment, or
equivalently ∑

n∈N
npn < ∞. (1)

For (Z, Ppn ,εn ) to be uniformly irreducible, it would suffice that there should exist
c > 0 such that (1 − pn) 1−εn

2 ≥ c for all n. If we have

pn
n→∞−−−→ 0 and εn

n→∞−−−→ 0 (2)

then (1 − pn) 1−εn
2

n→∞−−−→ 1
2 . In that case, replacing if necessary the values a finite

number of pn and/or εn with 0, we can have (1 − pn) 1−εn
2 ≥ c.

To study the transience of (Z, Ppn ,εn ), we consider P̃ on N0 defined by P̃(k, k +
1) = (1 − pn) 1+εn

2 , P̃(k, k − 1) = (1 − pn)
1−εn

2 and P̃(k, k) = pn . It is a nearest
neighbour random walk on N0, and its transience is equivalent to the transience of
(Z, Ppn ,εn ). Nearest neighbour random walks on N0 are well understood. As seen in
[20, Section 2.16], (N0, P̃) is transient if and only if

∞∑
k=1

r(ek) < ∞ (3)

where r(ek) = P̃(k−1,k−2)...P̃(1,0)

P̃(0,1)...P̃(k−1,k)
. We have r(ek+1)

r(ek )
= 1−εk

1+εk
and therefore defining εk

is equivalent to defining r(ek).
Finally, if the Green function of P̃ is G(P̃), then the expected number of “jumps”

between n and −n is G(P̃)(n, n)pn . We wish to obtain
∑

n G(P̃)(n, n)pn = ∞.

From the results of [20, Example 2.13, Section 2.16], it follows that G(P̃)(n, n) =
1

r(en)P̃(n,n−1)

∑∞
k=n+1 r(ek). If P̃(n, n − 1) ≥ c, it would suffice to have

∑
n∈N

pn
1

r(en)

∞∑
k=n+1

r(ek) = ∞. (4)

We now define r(ek) and pk and claim that those choices verify conditions (1), (2),
(3) and (4). Let

r(ek) = 1

k(ln k)2 and pk = 1

k2(ln k)2 .

We first prove condition (1). It suffices to observe that

∑
n≥2

npn ≤
∫ ∞

1

x

x2(ln x)2 dx = − 1

ln x

∣∣∣∣
∞

1

,
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which is finite. As r(ek) = kpk , this also proves condition (3). Condition (2) is
straightforward.

We now only need to prove condition (4). Similarly, we have

∞∑
k=n+1

r(ek) ≥
∫ ∞

n+1

1

x(ln x)2 dx = − 1

ln x

∣∣∣∣
∞

n+1

and thus

1

r(en)

∞∑
k=n+1

r(ek) ≥ n(ln n)2

ln(n + 1)
≈ n ln n.

Then,

∑
n∈N

pn
1

r(en)

∞∑
k=n+1

r(ek) ≥
∑
n∈N

1

n ln(n + 1)
≥

∫ ∞

2

1

x ln x
dx = ln(ln(x))

∣∣∣∣
∞

2

which is not finite. ��

3 Proof of Main Theorem 1.1

Consider a finite set K ⊂ X and denote Γ1, . . . , Γk the connected components of its
complement. We will study the probability to change the component at step n and
prove that the sum over n is finite.

Consider x ∈ X \ K and g ∈ G. We will study the probability that x .g is
not in the same component. Let g = s1s2 . . . sn where |g| = n and si ∈ S.
If x and x .g are in different components, by definition the path x, x .s1, . . . , x .g
passes through K . Therefore, there is i such that x .s1s2 . . . si ∈ K . Equivalently,
〈∑i≤n τs1s2...si δx ,

∑
k∈K δk〉 ≥ 1 where δy is the characteristic function at a given

point y and τ f is the translation defined by τ f δy = δy. f . We observe

〈
∑
i≤n

τs1s2...si δx ,
∑
k∈K

δk〉 = 〈δx ,
∑
i≤n

∑
k∈K

τs−1
i ...s−1

2 s−1
1

δk〉.

We denote

f =
∑

s1s2...sn∈G

μ(s1s2 . . . sn)
∑
i≤n

∑
k∈K

τs−1
i ...s−1

2 s−1
1

δk .

Then, the probability that x and x .g are in different components is not greater than
〈δx , f 〉. Furthermore, the l1 norm of f satisfies ‖ f ‖1 ≤ |K |‖μ‖1 where ‖μ‖1 is the
first moment of μ. In particular, it is finite.
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Take a random walk starting at a fixed point o and consider n large enough so that
the transient walk has left K . The probability of changing component at step n + 1 is
then not greater than

〈p(n)δo, f 〉.

We have∑
n∈N

〈p(n)δo, f 〉 =
∑
n∈N

∑
x∈X

p(n)(o, x) f (x) =
∑
x∈X

f (x)G(o, x)

where we will have the right to interchange the order of summation if we prove
that the right-hand side is finite. Let p̌ be the kernel induced by the inverse measure
μ̌ : g �→ μ(g−1), and G( p̌) the Green function corresponding to that kernel. Then,
G(o, x) = G( p̌)(x, o). It is a known property of the Green function that for all x, y ∈ X ,
we have G( p̌)(x, y) ≤ G( p̌)(y, y). This follows from the fact that the left-hand side is
the expected number of visits of y of a walk starting at x , while the right-hand side is
the expected number of visits starting at y. Thus,

∑
x∈X

f (x)G(o, x) ≤ G( p̌)(o, o)‖ f ‖1 < ∞.

This proves that after finite time, the walk almost surely stays in the same con-
nected component of the complement of K . Applying this for an increasing exhaustive
sequence of K , we obtain the result of Theorem 1.1.

It is worth mentioning that this approach is similar to the one used by
Kaimanovich [8, Theorem 3.3] to prove pointwise convergence of the configuration
of walks on lamplighter groups with a finite first moment.

4 Thompson’s Group F

We now apply Theorem 1.1 to Thompson’s group F . The Schreier graph on the dyadic
numbers has been described by Savchuk [17, Proposition 1](see Fig. 2). We have the
following self-similarity result:

Lemma 4.1 Consider the Schreier graphs of F for its action on Z[ 1
2 ] (see Fig. 2). We

denote left (respectively right) branch the subgraph of the vertices v for which any
geodesic between v and 5

8 passes through 13
16 (respectively, 9

16 ). On the figure, those
are the left and right branches of the tree, along with the rays starting at them. Then,
each branch can be embedded as a labelled graph into the other.

Remark that stronger results of self-similarity of this graph have already been
observed, see, for example, [9, Section 5.F].

Proof Each branch is a labelled tree, and thus, an equivariant embedding is uniquely
defined by the image of the root. We choose the image of 13

16 to be 25
32 . This defines an
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Fig. 2 Schreier graph of the dyadic action of F for the standard generators

embedding of the left branch into the right one. Similarly, choosing 11
16 as the image

of 9
16 defines an embedding of the right branch into the left one. ��
This implies:

Lemma 4.2 Fix a measure on F, the support of which generates F as a semi-group
such that the induced random walk on the dyadic numbers almost surely converges
towards an end of the graph. Then, the exit measure on the end space is not trivial.

Proof We decompose the end space into five sets: two sets containing, respectively, the
ends of the left or the right branch, and three sets that are the singletons corresponding
to the rays at 5

8 and 3
4 . The rays have equivariant embeddings into the branches.

Combining with Lemma 4.1, this means that any of those five sets can be equivariantely
embedded into another one. In particular, if the restriction of the exist measure on one
of them has nonzero mass, then by transitivity the restriction on the embedding also
has nonzero mass. ��
Acknowledgements I would like to thank Professor Wolfgang Woess for a discussion on the early variants of
this paper which helped to improve the original version. I am very grateful to Professor Vadim Kaimanovich
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FØLNER FUNCTIONS AND SETS ON WREATH PRODUCTS AND

BAUMSLAG-SOLITAR GROUPS

BOGDAN STANKOV

Abstract. We calculate the exact values of the Følner function of the lamplighter group for the standard
and the switch-walk-switch generating sets. Følner functions encode the isoperimetric properties of amenable
groups and have previously been studied up to asymptotic equivalence (that is to say, independently of
the choice of �nite generating set). We also obtain a lower bound for the Følner function for a class of
permutational wreath products (with certain generating sets). We use that bound to construct an example
of a group, the Følner function of which has the same exponent as its growth function. What is more, we
prove an isoperimetric result concerning the edge boundary on the Baumslag-Solitar group BSp1, 2q with
the standard generating set.

Følner function, Følner sets, lamplighter group, wreath products, permutational wreath products,
Baumslag-Solitar groups, Coulhon and Salo�-Coste inequality, growth function

1. Introduction

One equivalent characterisation of the amenability of an in�nite group G, called the Følner condition,
is that the isoperimetric constant (also known as Cheeger constant) of its Cayley graph should be 0. That

constant is de�ned as the in�mum of |BF ||F | over all �nite sets F Ă G with |F | ď 1
2 |G|. As the quotient

cannot reach 0, amenability is therefore characterised by the existence of a sequence of sets Fn such that
|BFn|
|Fn| converges towards 0, also known as a Følner sequence. One natural direction for studying the possible

Følner sequences on a given group is to ask how small the sets can be. We consider the Følner function (see
(3) for the de�nition of Bin):
De�nition 1.1. The Følner function Føl (or FølS ; or FølG,S) of a group G with a given �nite generating
set S is de�ned on N by

Følpnq “ min

"
|F | : F Ă G,

|BinF |
|F | ď 1

n

*
.

Remark that Følp1q “ 1. Most research seeks to classify it up to asymptotic equivalence. Two
functions are asymptotically equivalent if there are constants A and B such that fpx{Aq{B ă gpXq ă
fpxAqB. The Følner function of a group clearly depends on the choice of a generating set, but the functions
arising from di�erent generating sets (and more generally, functions arising from quasi-isometric spaces) are
asymptotically equivalent.

The classical isoperimetric theorem states that among domains of given volume in Rn, the minimal
surface area is obtained on a ball (see survey by Osserman [18, Section 2]). As Zn is quasi-isometric to
Rn, this is also a �rst isoperimetric result for discrete groups. The fact that if a minimum exists, it is
realised only on the ball is obtained (in R2) by Steiner in the XIXth century, using what is now called
Steiner symmetrization (see Hehl [14], Hopf [15], Froehlich [8]). The existence of a minimum is obtained, in
R3, by Schwarz [28]. Varopoulos [31] shows more generally an isoperimetric inequality for direct products.
Pansu [20] (see also [19]) obtains one for the Heisenberg group H3. One central result is the Coulhon and
Salo�-Coste inequality [5]:

Theorem 1.2 (Coulhon and Salo�-Coste inequality). Consider an in�nite group G generated by a �nite set
S and let φpλq “ minpn|V pnq ą λq. Then for all �nite sets F

|BinF |
|F | ě 1

8|S|φp2|F |q .

Date: 20 June, 2021.
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The multiplicative constants can be improved (see G�abor Pete [22, Theorem 5.11], Bruno Luiz Santos
Correia [27]):

(1)
|BinF |
|F | ě 1

2φp2|F |q .

The result of Santos Correia is also announced for �nite groups for |F | ď 1
2 |G|. The Coulhon and

Salo�-Coste inequality (Theorem 1.2) implies in particular that for a group with exponential growth, the
Følner function must also grow at least exponentially. Similarly, it is known that the Følner functions of
groups with polynomial growth are polynomial (see for example [34, Section I.4.C]). Another inequality

on group isoperimetry is given by 
Zuk [35]. Vershik [32] asks if Følner function can be super-exponential,
initiating the study of Følner functions. He suggests studying the wreath product Z oZ as a possible example.
Pittet [23] shows that the Følner functions of polycyclic groups are at most exponential (and are therefore
exponential for polycyclic groups with exponential growth). This is true more generally for solvable groups
of �nite Pr�ufer rank, see [25] and [16]. The �rst example of a group with super-exponential Følner function
is obtained by Pittet and Salo�-Coste [24] for Zd oZ{2Z. Later the Følner functions of wreath products with
certain regularity conditions are described by Erschler [6] up to asymptotic equivalence. Speci�cally, say
that a function f veri�es property p˚q if for all C ą 0 there is k ą 0 such that fpknq ą Cfpnq. The result of
[6] than states that if the Følner functions of two groups A and B both verify property p˚q, then the Følner
function of A oB is FølAoBpnq “ FølBpnqFølApnq.

Other examples with know Følner functions have been presented by Gromov [12, Section 8.2,Re-
mark (b)] for all functions with su�ciently fast growing derivatives. Salo�-Coste and Zheng [26] provide
upper and lower bounds for it on, among others, "bubble" groups and cyclic Neumann-Segal groups, and
those two bounds are asymptotically equivalent under certain conditions. Recently, Brieussel and Zheng [3]
show that for any non-decreasing f with fp1q “ 1 and x{fpxq non-decreasing, there is a group whose Følner
function is asymptotically equivalent to the exponent of the inverse function of x{fpxq. Erschler and Zheng [7]
obtain examples for a class of super-exponential functions under exppn2q with weaker regularity conditions.
Speci�cally, for any d and any non-decreasing τ such that τpnq ď nd, there is a group G and a constant C
such that

(2) Cn exppn` τpnqq ě FølGpnq ě expp 1

C
pn` τpn{Cqqq.

The left-hand side of this inequality is always asymptotically equivalent to exppn`τpnqq, and it su�ces
therefore that the right-hand side be asymptotically equivalent to that function to have a description of the
Følner function of G. Notice in particular that if τ veri�es condition p˚q, this is veri�ed. Remark that the
conditions we mentioned only consider functions at least as large as exppnq; it is an open question whether a
Følner function can have intermediate growth (see Grigorchuk [10, Conjecture 5(ii)]). By a result of Erschler,
a negative answer would imply the Growth Gap Conjecture [10, Conjecture 2], which conjectures that the
volume growth function must be either polynomial or at least as fast as expp?nq. Those conjectures also
have weak versions, which are equivalent to each other (see discussion after Conjecture 6 in [10]).

1.1. Formulation of results. In this paper, we obtain the exact values of the Følner function for two
classical generating sets on the lamplighter group Z o Z2 (see De�nition 2.2) where by Z2 we denote Z{2Z.
The standard Følner sets Fn on that group are de�ned as Fn “ tpk, fq|k P rr1, nss, supppfq Ă rr1, nssu. The
two generating sets we consider are the standard set S “ tt, δu (see (4)) and the switch-walk-switch set
S1 “ tt, δ, tδ, δt, δtδu.

We will provide a lower bound for the outer boundary of a class of permutational wreath products in
Theorem 4.1. It applies in particular to Z o Z2, and we will obtain that the standard sets are optimal (see
De�nition 3.1) for the outer and edge boundaries for the standard generating set. We then show that by
Lemma 3.2, Fn

Ť BoutFn is optimal for the inner boundary, and obtain the Følner functions :

Theorem 1.3. Consider the lamplighter group Z o Z2.

(1) For any n P N and any F Ă Z o Z2 such that |F | ď |Fn|, we have

|BF |
|F | ě

|BoutF |
|F | ě |BoutFn|

|Fn| “ |BFn|
|Fn| ,

2
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and if |F | ă |Fn|, the inequalities are strict,
(2) From point p1q it follows that for any n P N and any F Ă Z o Z2 such that

(a) (For the standard generating set) |F | ď |FnŤ BoutFn|, we have |BinF |
|F | ě |BinpFn

Ť BoutFnq|
|Fn

Ť BoutFn| , and

if |F | ă |FnŤ BoutFn|, the inequality is strict,

(b) (For S1) |F | ď |FnŤ B1outFn|, we have
|B1inF ||F | ě |B1inpFn

Ť B1outFnq|
|Fn

Ť B1outFn| (notice that Fn
Ť B1outFn “

t´1Fn`2), and if |F | ă |FnŤ B1outFn|, the inequality is strict,
(3) From point p2q it follows that, for n ě 2, the Følner functions of the lamplighter group for the

standard generating set is

Følpnq “ 2n22pn´1q

and for the switch-walk-switch set it is

Følswspnq “ 2n22n.

We also obtain that for the standard generators, the sets giving equality are unique up to translation.
We then substitute those values in the Coulhon and Salo�-Coste inequality in order to study the

multiplicative constants. The inequality 1 implies (for all groups and all generating sets) that

2 Følpnq ą V pn
2
´ 1q.

For groups with exponential growth, it is easy to see that the multiplicative constant in front of n
holds more importance than the other constants. Indeed, if we were to prove that AFølpnq ě V pnp 1

2`εq´Bq
for any ε,A,B ą 0, that would be a strictly stronger result for large n. One may then ask:

Question 1.4. For a group G and a generating set S, denote by CG,S the supremum of the set of constants
C such that there exist A,B such that AFølpnq ě V pCn´ Bq. What is the in�mum C0 of the set of CG,S
over all �nitely generated groups and all �nite generating sets?

The original inequality obtains a positive result for C “ 1
8|S| (and thus C0 ě 1

8|S| ), while the results
of [22, Theorem 5.11] and [27] that we cited as Equation 1 show that C0 ě 1

2 . We will go in detail on this

constant in the preliminary Section 2, where we will show in Proposition 2.4 that CG,S “ lim inf
ln Følpnq

n

lim
ln V pnq

n

.

Proposition 1.5. The lamplighter group veri�es

CZoZ2,S “
lim ln Følpnq

n

lim lnV pnq
n

“ ln 4

lnp 1
2 p1`

?
5qq « 2, 88

for the standard generating set, and

CZoZ2,S1 “
lim ln Følswspnq

n

lim lnVswspnq
n

“ 2.

This provides an upper bound of 2 for C0. Remark that the bound was already known before proving
that the standard sets are optimal; what Theorem 1.3 gives is that this example cannot improve it. In
Example 2.6 we will see that the upper bound can be lowered to C0 ď 1.

Another direction that can be considered once one has exact evaluations of Følner functions is studying
the power series

ř
n Følpnqxn. The equivalent series have been studied for volume growth (see Grigorchuk-de

la Harpe [11, Section (4)]). One central question that a lot of authors have considered is the rationality of
those series as a function. For the two examples shown here, the power series of the Følner function are
rational functions: they are respectively 2x

p4x´1q2 et 8x
p4x´1q2 .

We also obtain results for the Baumslag-Solitar group BSp1, 2q (see De�nition 2.3), however only in
respect to the edge boundary. Taking the notation from the de�nition, its standard sets are de�ned the same
way as in the lamplighter group.

Theorem 1.6. Consider the Baumslag-Solitar group BSp1, 2q with the standard generating set. Then for
any n P N and any F Ă Z o Z2 such that |F | ď |Fn|, we have |BF | ě |BFn| (where Fn are the standard sets),
and if |F | ă |Fn|, the inequality is strict.

3
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This result is not always true for Bp1, pq for larger p, and we will provide a counter example for p “ 8
and the standard set with 8 elements. However this counter example comes from p being signi�cant when
compared to the length of the interval de�ning the standard set, and it is possible that for Bp1, pq as well,
standard sets are optimal above a certain size.

We present more detailed de�nitions and construct Example 2.6 in the next section. In Section 3,
we present associated graphs, which are the main tool of the proof, and prove some general results. In
particular, we show Lemma 3.2, which will be used to obtain that part p2qa of Theorem 1.3 follows from
part p1q. In Section 4, we announce and prove Theorem 4.1 and show that the main Theorem 1.3 follows
from it. In Section 5, we prove Proposition 1.5. Finally, in Section 6, we study Baumslag-Solitar groups.

2. Preliminaries and examples

The concept of amenability �nds its origins in a 1924 result by Banach and Tarski [1], where they
decompose a solid ball in R3 into �ve pieces, and reassemble them into two balls using rotations. That is now
called the Banach-Tarski paradox. The proof makes use of the fact that the group of rotations of R3 admits
a free subgroup. Von Neumann [17] considers it as a group property and introduces the concept of amenable
groups. Tarski [29] later proves amenability to be the only obstruction to the existence of "paradoxical"
decompositions (like the one in Banach-Tarski's article) of the action of the group on itself by multiplication,
as well as any free actions of the group. One way to prove the result of Banach-Tarski is to see it as an
almost everywhere free action of SO3pRq and correct for the countable set where it is not (see Wagon [33,
Cor. 3.10]). For more information and properties of amenability, see books by Greenleaf [9] and Wagon [33],
or an article by Ceccherini-Silberstein-Grigorchuk-la Harpe [4], or a recent survey by Bartholdi [2].

De�nition 2.1 (Følner criterion). A group G is amenable if and only if for every �nite set S Ă G and every
ε ą 0 there exists a set F such that

|F∆S.F | ď ε|F |.
If G is �nitely generated, it su�ces to consider a single generating set S instead of all �nite sets. We

can also apply De�nition 2.1 for S
Ť
S´1

ŤtIdu. Then |F∆pSŤ
S´1

ŤtIduq.F | is the set of vertices in the
Cayley graph of G that are at a distance exactly 1 from F . We denote that the outer boundary BoutF . Then
the condition can be written as |BoutFn|

|Fn| ď ε, or in other words that the in�mum of those quotients should

be 0. Similarly, let

(3) BinF “
!
g P F : Ds P S

ď
S´1 : gs R F

)
.

Finally, we consider BF to be the set of edges between F and its complement. Remark that while those

values can di�er, whether the in�mum of |BF ||F | is 0 or not does not depend on which boundary we consider.

For groups of subexponential growth, for every ε, there is some n such that the ball around the identity
of radius n is a corresponding Følner set. Note that to obtain a Følner sequence from this, one needs to
consider a subsequence of the sequence of balls of radius n. It is an open question whether in every group of
subexponential growth, all balls form a Følner sequence. For groups of exponential growth, it is generally
not su�cient to consider balls, and it is an open question whether there exists any group of exponential
growth where some subsequence of balls forms a Følner sequence (one place where the question is mentioned
is by Tessera [30, Question 15]).

For two groups A and B, denote BpAq the set of functions from A onto B such that all but a �nite
number of values are IdB .

De�nition 2.2. The (restricted) wreath product A o B is the semi-direct product of A and BpAq where A
acts on BpAq by translation.

We can write the elements as pa, fq with a P A and f P BpAq. The group law is then pa, fqpa1, f 1q “
paa1, x ÞÑ fpxqf 1pxa´1qq.

Given generating sets S and S1 on A and B respectively, we can de�ne a standard generating set
of A o B. It consists of the elements of the form ps, IBq for s P S (where IB “ IdB for all x P A), as well
as pIdA, δs1IdAq for s1 P S1 where δs

1
IdA
pIdAq “ s1 and δs

1
IdA
pxq “ IdB for all other x. One can verify that

multiplying an element pa, fq on the right with the �rst type of generating element, one obtains pas, fq, and
with the second type, the value of f at the point a is changed by s1.
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Similarly, given Følner sets FA and FB on A and B respectively, one obtains standard Følner sets on
A oB:

F “ tpa, fq|a P FA, supppfq Ă FA,@x : fpxq P FBu.
Their outer boundary is

BoutF “ tpa, fq|a P BoutFA, supppfq Ă FA,@x : fpxq P FBu Y ta P FA, supppfq Ă FA, fpaq P BoutFBu.
As |F | “ |FA||FB ||FA| and |BoutF | “ |BoutFA||FB ||FA| ` |FA||FB ||FA|´1|BoutFB |, we have

|BoutF |
|F | “ |BoutFA|

|FA| ` |BoutFB ||FB | .

We will focus on the lamplighter group Z oZ2. As both of those groups have standard generating sets,
this gives us a standard generating set on the lamplighter group:

(4) S “ tt, δu where t “ p1, 0q and δ “ p0, δ1
0q.

The Baumslag-Solitar groups are de�ned as follows:

De�nition 2.3. The Baumslag-Solitar group BSpm,nq is the two-generator group given by the presentation
xa, b : bamb1 “ any.

The standard generating set is ta, bu.
We will focus on the groups BSp1, pq. That group is isomorphic to the group generated by x ÞÑ px

and x ÞÑ x ` 1 (by mapping b´1 and a to them respectively). In that group, any element can be written
as pnx ` f with n P Z and f P Zr 1p s. Its generators act respectively by changing n or by adding pn to f .

Similarly to the lampligher group, we will write the elements as pn, fq. The standard Følner sets are then
expressed in the same way as for wreath products. In other words:

Fn “ tpkx` f |k P rr1, nss, f P Z, 0 ď f ă pn`1u.
With regards to the constant mentioned in Question 1.4, it is not hard to see that if the limits

lim ln Følpnq
n and lim lnV pnq

n exist for a given group and generating set, the supremum CG,S in that case would
be their quotient (a proof will be given in Proposition 2.4). The second limit always exists. Indeed, as
any element of length at most mn can be written as a product of two elements of length at most m and n
respectively, we have

V pm` nq ď V pmqV pnq,
and thus lnV pnq is sub-additive. The limit then exists by Fekete's Subadditive Lemma. However, the other

limit lim ln Følpnq
n doesn't always exist. The trivial example would be groups with super-exponential Følner

functions, where it diverges towards `8. However, even choosing the convention that we will consider that
as a converging sequence, the limit still doesn't always exist. We can see that in examples by Erschler

and Zheng where the Følner function oscillates between expn and expnc. In that case ln Følpnq
n oscillates

between a �nite constant and plus in�nity. Speci�cally, consider [7, Example 3.8(2)] for α “ 1 and β “ 2.
Take a sequence pηiq and a function τpnq “ nα for n P rη2j´1, η2js and τpnq “ nβ for n P rη2j , η2j`1s. The
example then gives us a group, the Følner function of which veri�es Inequality 2. For n P rη2j´1, η2js we
have ln Følpnq

n ď lnpCnq
n ` 1` τpnq

n , which is smaller than 3 for large n. On the other hand, if n P rη2j , η2j`1s,
ln Følpnq

n ě 1
Cn pn ` τpn{Cqq “ 1

C ` n
C3 . In particular, it is strictly larger than 4 for large n. Thus, ln Følpnq

n
neither converges towards a �nite number, nor diverges towards `8. However, we can still consider lim inf.

Proposition 2.4. For any given group and generating set, the supremum of the constants C such that

AFølpnq ě V pCn´Bq for some A,B is CG,S “ lim inf
ln Følpnq

n

lim
ln V pnq

n

.

Proof. Assume that AFølpnq ě |BpCn´Bq| for some A,B,C. For any n, we have

ln Følpnq
n

ě lnp|BpCn´Bq|q ´ lnA

n
“ C

lnp|BpCn´Bq|q
Cn

´ A1

n

where A1 is a constant. This is in particular true on any subsequence and thus
5
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lim inf ln Følpnq
n

lim ln bn
n

ě C.

Inversely, if C ă lim inf
ln Følpnq

n

lim ln bn
n

, by de�nition of lim and lim inf, there is N0 such that for any n ě N0,
ln Følpnq

n
ln |BpCnq|

Cn

ą C. Equivalently, ln Følpnq
n ě C lnp|BpCnq|q

Cn , or

Følpnq ě |BpCnq|.
By choosing appropriate A and B we obtain the result for n ă N0 as well. �

In order to provide an example where CG,S ď 1, we will need to consider a generalisation of wreath
products.

De�nition 2.5. Consider a group A acting on a set X and denote the action by a. The (restricted)
permutational wreath product A oa B is the semi-direct product of A and BpXq where A acts on BpXq by
translation.

Remark that a wreath product A oB is the permutational wreath product with regards to the action
of A on itself by multiplication.

Consider the in�nite dihedral group D8, de�ned as

D8 “ xa, x|x2 “ e, xax “ a´1y.
Alternatively, it is the semi-direct product of Z{2Z on Z, with the non-identity acting as the inverse map
on Z. All elements can thus be written either as xan or as an for some n P Z. We will consider it with a
di�erent generating set : the set tx, yu where

y “ xa.

Note that xax “ a´1 becomes pxaq2 “ e and thus the in�nite dihedral group is the free product of two
copies of Z{2Z.

Figure 1. (A portion of the) Schreier graph of D8 for the subgroup te, xu with x (dashed,
black), y (blue) and a (thin, red). We will consider it with the generating set tx, yu (without
the red lines)

1 2 3

-1 -2 -3

0 . . .

Consider the subgroup te, xu ă D8 and the (left) Schreier coset graph it de�nes (with generating set
tx, yu). We are interested in the associated action a of D8 on the costets (de�ned by multiplication). By
de�nition, each vertex of the graph is of the form tg, xgu. Since x2 “ e, we have

tg, xgu “ txan, anu
for some n P Z. Representing the set txan, anu with the integer n, the graph is pictured in Figure 1.
Considering it with the generating set tx, yu, it becomes a ray: 0, 1,´1, 2,´2, 3,´3, . . . .

Example 2.6. The wreath productD8oaZ2 with the generating set Sdih “ ttx, ty, δ, txδ, δtx, δtxδ, tyδ, δty, δtyδu
veri�es CD8oaZ2,Sdih

“ lim inf
ln Følpnq

n

lim
ln V pnq

n

ď 1.
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Proof. Fix some integer n. We have standard Følner sets on D8 de�ned as

An “ tak, xak; |k| ď nu.
This gives us standard Følner sets on the wreath product D8 oa Z{2Z:

F2n`1 “ tpk, fq; |k| ď n, supppfq Ď Anu.
Remark that since the Schreier graph of the action a is a ray, the boundary of the image of An is only 1.

We claim that we thus have |BinF2n`1|
|F2n`1| “ 1

2n`1 . Let us verify that. We have

|F2n`1| “ 2p2n` 1q22n`1.

Consider a point pεak, fq P BinF2n`1 where ε “ x or the neutral element e. By de�nition, there exists s P Sdih
such that pεak, fqs “ pε1ak1 , f 1q R F2n`1. We have either supppf 1q Ę An, or ε

1ak1 R An. If supppf 1q Ę An
then either εak or ε1ak1 is not in An. As εak P An by de�nition, we have ε1ak1 R An. In both cases we obtain
that ε1ak1 R An. Therefore εak P BinAn; or in other words k “ ´n. Thus

|BinF2n`1| “ 2ˆ 22n`1.

This proves that their quotient is 1
2n`1 . Then Følp2n` 1q ď 2p2n` 1q22n`1 and

lim inf
ln Følpnq

n
ď ln 2.

We now estimate V pnq. Consider products of type s1s2 . . . sn where s2i P ttx, δtxu and s2i`1 P tty, δtyu.
We have

s1s2 . . . s2i “ pa´i, f2iq
s1s2 . . . s2i`1 “ pxai`1, f2i`1q

for some functions fi. Then the two choices of si we consider determine the value of fnpiq. In particular,
any two di�erent choices result in s1s2 . . . sn being a di�erent element of D8 oa Z{2Z. Moreover, we have
that the length of s1s2 . . . sn is n. Therefore V pnq ě 2n and

lim
lnV pnq
n

ě ln 2.

�

Applying Proposition 2.4 we obtain:

Corollary 2.7. The answer to Question 1.4 is at most 1.

We will also show that those Følner sets are optimal in Section 4.

Proposition 2.8. In the wreath product D8oaZ2 with the generating set Sdih “ ttx, ty, δ, txδ, δtx, δtxδ, tyδ, δty, δtyδu,
the standard Følner sets F2n`1 “ tpk, fq; |k| ď n, supppfq Ă Anu are optimal with respect to the inner and
outer boundaries.

3. Main concepts of the proof

De�nition 3.1. We will call a set F in a group G optimal with respect to the inner (respectively outer,

edge) boundary if for any F 1 with |F 1| ď |F |, it is true that |BinF 1||F 1| ě |BinF |
|F | (respectively |BoutF

1|
|F 1| ě |BoutF |

|F | ,
|BF 1|
|F 1| ě |BF |

|F | ), and if |F 1| ă |F |, the inequalities are strict.
Lemma 3.2. If F is optimal for the outer boundary, up to replacing F with another optimal set of the same
size, F

Ť BoutF is optimal for the inner boundary,

Proof. We will prove the large inequality. The case for the strict inequality is equivalent.
Let F be optimal for the outer boundary and consider F 1 such that |F 1| ď |F Ť BoutF | and the quotient

of the inner boundary is smaller. Without loss of generality, we can assume that F 1 is optimal for the inner
boundary.

Let F 2 “ F 1zBinF 1. Observe that BoutF 2 Ă BinF 1. We �rst claim that F 1 being optimal implies that
BoutF 2 “ BinF 1. Indeed, |F 2Ť BoutF 2| ď |F 1|, and
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|BinpF 2Ť BoutF 2q|
|F 2Ť BoutF 2| ď |BoutF 2|

|F 2Ť BoutF 2| “
|BoutF

2|
|F2|

1` |BoutF2|
|F2|

,

while

|BinF 1|
|F 1| “

|BinF 1|
|F2|

1` |BinF 1|
|F2|

.

As BoutF 2 Ă BinF 1 and x
x`1 is an increasing function in R`, the �rst quantity is smaller then the

second, and by F 1 being optimal, we have an equality.
We now consider cases for the size of F 2. If |F 2| ď |F |, then we can apply the assumption that F is

optimal and we get

|BoutF |
|F | ď |BoutF 2|

|F 2| “ |BinF 1|
|F 1zBinF 1| “

|BinF 1|
|F 1|

1´ |BinF 1|
|F 1|

.

However, applying the initial assumption by which we chose F 1 gives us the inverse inequality, and
strict.

We are left with the case where |F 2| ą |F |. Let k “ |F 2| ´ |F | and remove any k points from F 2 to
obtain F3. We obtain a set that is the same size as F and has an outer boundary no larger than that of
F . It is therefore another optimal set of the same size, and by the optimality of F 1 for the inner boundary,
F3BoutF3 “ F 1, which concludes the proof. �

The central idea of this paper is to work on an associated graph structure which we can de�ne for a
group, the elements of which we have written in the form pn, fq.
De�nition 3.3. Consider a group G and an encoding of its elements as pairs pn, fq P A ˆ B. Consider a
generating set S of G. We de�ne the associated graph as the directed labelled graph Γ “ ΓS with vertex set
V pΓq “ B and edge set

ÝÑ
E “ tpf1, f2q : Ds P S, n1, n2 P A such that pn1, f1qs “ pn2, f2qu.

With those notations, the edge pf1, f2q is labelled s.
As mentioned, the two examples we will consider here are the lamplighter group Z o Z2 and the

Baumslag-Solitar group BSp1, pq. In both examples we have A “ Z. In the case of the lamplighter group

we have B “ ZpZq2 , and for BSp1, pq, B is the set of p-adic numbers.
We de�ne an associating function φ : GÑ PpΓq by

φpn, fq “ tpf, fjq|pn, fqs “ pn1, fjq for some n1 P A, s P Su.
De�nition 3.4. Consider a group G and an encoding of its elements as pairs pn, fq P A ˆ B. Let F be a
�nite subset of G. The associated subgraph of F is the subgraph of the associated graph Γ made of the edges

ď

xPF
φpxq

and all adjacent vertices.

We will provide a bound for the boundary of a set based on a formula on the associated subgraph,
and maximise the value of that formula over all subgraphs of Γ no larger (in terms of number of edges) than
the associated subgraph.

4. The lamplighter group

In this section we provide the proof of Theorem 1.3, the larger part being a proof of Theorem 1.3p1q. In
other words, we show that the standard sets are optimal with respect to the outer boundary, and uniquely
so up to translation. We will present it in a more general context, so that Proposition 2.8 also follows.
Speci�cally, they will be shown to follow from the following lower bound:

8

85



Theorem 4.1. Consider a permutational wreath product AoaZ2, where A is in�nite, equipped with generating
set that includes a set of elements of the form pt, IBq where the set of these t generates A. Denote by β the
cardinal of any (every) stabiliser of the action. Then for every �nite subset F of A oa Z2 with |F | ď βn2n,

we have |BoutF |
|F | ě 2

βn . Furthermore, equality can only be achieved by sets, the associated subgraph of which

is formed of all con�gurations with support in some set I in the space acted on, such that the boundary of I
is exactly 2{β.

Remark in particular that for those groups we will have lim inf ln Følpnq
n ě ln 22{β .

We �rst prove an inequality relying the isoperimetry of a subset with values of the associated subgraph.

Lemma 4.2. Let F be a �nite set in A oa Z2. Let Γ be the associated graph (see De�nition 3.3). Then

|BoutF |
|F | ě min

ˆ
2|V pGq|
|EpGq| for G subgraph of Γ with at most |F | edges

˙
.

We will obtain that by estimating the number of points in the boundary that are reachable from the
set by multiplication by a generating element of A. Remark that every (labelled) edge corresponds to exactly
β elements in the group.

Proof. Consider a �nite set F of elements of A oa Z2. Let F̃ be the associated subgraph (see De�nition 3.4).
A leaf we call a vertex which is included in exactly one edge of the subgraph and is at the head of that edge.
The set of leaves we denote by LpF̃ q. We claim:

(5) |BoutF | ě 2|V pF̃ q| ´ |LpF̃ q| “ 2p|V pF̃ q| ´ |LpF̃ q|q ` |LpF̃ q|.
More speci�cally, we claim that for each con�guration f that is a vertex of this subgraph, either f is

a leaf and there is at least one element of BoutF that has f as its con�guration, or f is not a leaf and there
are at least two such elements. The �rst case follows directly from the de�nition of a leaf.

Assume that f is not a leaf. Then either there are two edges ending in f , or there is at least one edge
starting at f . Once again, the �rst case follows directly from the de�nition. In the second case, A being
in�nite implies that its Cayley graph has Z as a subgraph, and thus any subset of A has at least two points
in its boundary. If they are a and b, then pa, fq and pb, fq are in the outer boundary of F .

Now we only need to prove that

2|V pF̃ q| ´ |LpF̃ q|
|EpF q| ě min

ˆ
2|V pGq|
|EpGq| for G subgraph of Γ with at most |F | edges

˙
.

We will prove it by induction on the number of edges. The base is trivial, and so is the case where F̃
has no leaves. Assume now that it contains a leaf and remove that leaf and the edge leading to it. Denote
by F 1 the set we obtained. We have |V pF̃ 1q| “ |V pF̃ q| ´ 1, |EpF 1q| “ |EpF q| ´ 1 and |LpF̃ 1q| ě |LpF̃ q| ´ 1.
Therefore

2|V pF̃ 1q| ´ |LpF̃ 1q|
|EpF 1q| ď 2|V pF̃ q| ´ |LpF̃ q| ´ 1

|EpF q| ´ 1
ď 2|V pF̃ q| ´ |LpF̃ q|

|EpF q| .

Furthermore, F 1 has less edges, which concludes the induction step. �

Having proven Lemma 4.2, we now need to show that the standard sets minimise 2|V pGq|
|EpGq| over subgraphs

of Γ with a �xed amount of edges. It would su�ce to show that any subgraph with strictly less vertices has
strictly less edges. In other words, we have to understand the sets of �xed size that maximise the amount
of edges between them. Remark that if a graph contains the directed edge px, yq, adding the edge py, xq
increases the number of edges without changing the number of vertices. We can therefore assume that any
directed edge is present simultaneously with its inverse and replace them both with one undirected edge.

The graph we obtain is the in�nite hypercube. As the subgraphs G we consider are �nite, by hy-
pothesis, they are contained in a �nite hypercube. In that case, the question of maximising the number
of edges on a �xed number of vertices has already been answered in literature. One proof is presented in
Harper's book [13, Section 1.2.3]. Taking notations from the book, for any subset C Ă N of cardinal c, and
any con�guration f supported outside of C, we consider the set of vertices that are equal to f outside of

C and can be anything inside C and call that a c-subcube. A vertex set S of cardinal k “ řK
i“1 2ci with
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ci ă cj for i ă j is cubal if it is a disjoint union of ci-subcubes with the ci-subcube being contained in the
neighbourhood of the cj-subcube for i ă j. Here, neighbourhood means the set of points at distance 1 in
graph distance. Remark that two cubal sets of the same cardinality are isomorphic. Then Theorem 1.1 from
the cited section states

Theorem 4.3 ([13, Section 1.2.3 - Theorem 1.1]). S maximises |EpSq| for its cardinality if and only if S is
cubal.

As the associated graphs of the standard sets are cubal, and all cubal sets of a size that is a power of
2 are also subcubes, Theorem 4.1 follows. We have now obtained Theorem 1.3p1q and the outer boundary
case of Proposition 2.8.

We now turn to the general case. By Lemma 3.2, Theorem 1.3p2qa follows from Theorem 1.3p1q (and
the unicity of the optimal sets). To show that Theorem 1.3p2qb follows from Theorem 1.3p2qa, observe that
we always have BinF Ă B1inF , and their sizes are the same for the standard sets. The inner boundary case of
Proposition 2.8 also follows as in that group we have Fn

Ť BoutFn “ Fn`1 (similarly to the switch-walk-switch
generating set). Theorem 1.3p3q follows directly from Theorem 1.3p2q.

5. Bounds for the Coulhon and Saloff-Coste inequality for the lamplighter group

We recall that in terms of exponential growth, the Coulhon and Salo�-Coste inequality implies

Corollary 5.1. Given a group G and a generating set S, the Følner function Følpnq and the volume growth
V pnq verify

lim inf
ln Følpnq

n
ě 1

2
lim

lnV pnq
n

.

We will now prove Proposition 1.5. Recall its statement:

Proposition. The lamplighter group veri�es

lim ln Følpnq
n

lim lnV pnq
n

“ ln 4

lnp 1
2 p1`

?
5qq « 2, 88

for the standard generating set, and

lim ln Følswspnq
n

lim lnVswspnq
n

“ 2.

Proof. We have lim n
a

Følpnq “ lim n
a

Følswspnq “ 4. What is left is to calculate the exponent of their
volume growth.

For the standard generating set, we write an element in a standard form. To obtain it, we consider
the support of the element's con�guration. If that support is rm, ps we can then write it as tmAti where A
is a non-reducible word of length at most p´m on t and δ (without their inverses). In particular, m, i and
p´m are all less than n. Therefore if we denote by V 1pnq the amount of non-reducible words on t and δ of
length at most n, we obtain that V 1pnq4n2 ě V pnq ě V 1pnq. We then need only to understand V pnq. Notice
that the only condition on those words in the lamplighter group is to not have two consecutive δ-s. Therefore
V 1pnq is same as the amount of subsets of r1, ns without two consecutive elements. A simple induction shows
that those are (up to translation) the Fibonacci numbers: such a subset either has n in it, in which case the

rest of the subset is contained in r1, n´ 2s, or it does not have n. Therefore lim n
a
V pnq “ 1`?5

2 .
The switch-walk-switch volume is similarly controlled by the size of the set of possible con�gurations

given a certain interval. However, in its case all con�gurations with support in that interval are found on an
element in the ball. Thus 4n32n ě Vswspnq ě 2n and lim n

a
Vswspnq “ 2. �

It is worth noting that the exact value of the volume growth power series
ř
n V pnqxn for the standard

generating set has been described by Parry [21].
10
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6. The Baumslag-Solitar group Bp1, 2q
Similarly to the case of the lamplighter group, it is important to understand subgraphs of the asso-

ciated graph with n vertices and a maximal number of edges. In the case of the Baumslag-Solitar group,
con�gurations are represented by sums of powers of 2, with the value of a con�guration at a given point
representing the presence or absence of a given power. As a conjugation by the active generator in the group
amounts to multiplying by a power of 2, without loss of generality we can assume that the vertices of Γ are
the natural numbers, and that edges are of the form pn, n` 2iq for n, i P N. Furthermore, as this structure
is preserved by translation by an integer, we can assume that the smallest vertex label in our subgraph is 1.
We will prove:

Lemma 6.1. A subgraph with a maximal number of edges and n vertices is rr1, nss.
Proof. We will prove the result by induction on n. Fix a subgraph F with n vertices. We will prove that it
has less edges than rr1, nss, the equation being strict unless they are equal (or a translation thereof).

Assume �rst that all elements of F are odd. In that case we consider the set F 1 “ tf ´ 1 : f P F u.
Let 2i be the largest power dividing all elements of F 1. De�ne ψpfq “ f´1

2i ` 1. Then the set ψpF q is a set
of integers with the smallest element being 1. Furthermore, f ´ f 1 is a power of 2 if and only if ψpf 1q´ψpfq
is. Without loss of generality we can replace F by ψpF q.

We now have that F has both even and odd elements. Let F1 be the set of odd elements of F , and F2

the set of even elements. By F 11 we will denote pF1 ´ 1q{2, and by F 12 we will denote F2{2. As the di�erence
between elements of F1 and F2 is always odd, there can be an edge if and only if the di�erence is 1. Then
the number of edges in F is not greater than

ep|F1|q ` ep|F2|q ` 2 minp|F1|, |F2|q ´ ε
where epnq is the number of edges in rr1, nss and ε “ 1 if |F1| and |F2| are equal, and 0 otherwise.

For a P N with 2k´1 ă a ď 2k we have that epaq is the sum over i of the amount of edges between
elements with di�erence 2i. In other words,

epaq “
k´1ÿ

i“0

a´ 2i “ ka´ 2k ` 1.

Let us denote 2k´1 ă a “ |F1| ď 2k, 2l´1 ă b “ |F2| ď 2l and 2t´1 ă a` b “ n ď 2t. Without loss of
generality, assume a ď b. Then t´ 1 ď l ď t. Let δ “ t´ l. We calculate

ep|F1|q ` ep|F2|q ` 2 minp|F1|, |F2|q ´ ε´ epnq “ epaq ` epbq ` 2a´ ε´ epnq
“ ka´ 2k ` 1` lb´ 2l ` 1` 2a´ ε´ npa` bq ` 2t ´ 1

“ pk ´ l ` 2qa´ δpa` bq ` 1´ 2k ` 2t ´ 2l ´ ε “ A.

Since t ´ 1 ď l ď t, we have δ “ 0 or 1. We consider those two cases. First, assume δ “ 0. Then
2t “ 2l and

A “ pk ` 2´ tqa` 1´ 2k ´ ε.
As k ď t´ 1, we have A ď a` 1´ 2k ´ ε ď 0.

Assume now δ “ 1. Then

A “ pk ` 3´ tqa´ n` 1´ 2k ` 2t´1 ´ ε.
Assume �rst that k ď t´ 2. Then A ď a´ 2k ´ pn´ 2t´1 ´ 1q ´ ε ď 0.
The only case left is k “ t´ 1. Then

A “ a´ b` 1´ ε.
If a´ b “ 0, then ε “ 1 and A “ 0. If a´ b ď ´1, then A ď ´ε ď 0. �

Considering the edge boundary, the Baumslag-Solitar group has two types of edges on the boundary
corresponding to the two generators. In the last section, we described the boundary corresponding to p1, 0q.
We will now also describe the boundary corresponding to p0, 1q. As before, for an element pn, fq in a set
F in the group, we can consider its orbit by p0, 1q, which is isomorphic to Z and therefore has at least two
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elements in the boundary. Therefore the boundary corresponding to p0, 1q is at least 2opΓF q where opΓF q is
the amount of orbits corresponding to adding 2n for some n for some subgraph Γ´F of Γ. For the subgraph
rr1, nss, that number is n´ 1. We will prove that that is optimal by induction on |V pΓF q| ` opΓF q.
Lemma 6.2. Consider a subgraph ΓF such that |V pΓF q| ` opΓF q “ 2n´ 1 or 2n. Then it has at most epnq
edges.

Proof. We will prove it by induction on n. Without loss of generality, we can assume that ΓF has both
even and odd vertices, the sets of which we denote F1 and F2. Once again, without loss of generality we
can assume that there is at least one edge between F1 and F2 (otherwise we can move F2 to a set of even
elements disjoint from F1 and divide everything with a power of 2). Therefore opΓF q ě opF1q ` opF2q ` 1
and |V pΓF q| “ |V pF1q| ` |V pF2q|. Then 2n´ 1 ě |V pΓF q| ` opΓF q ´ 1 ě |V pF1q| ` opF1q ` |V pF2q| ` opF2q.
If k1 “ r |V pF1q|`opF1q

2 s and k2 “ r |V pF2q|`opF2q
2 s, this implies k1 ` k2 ď n. The rest follows from the proof of

Lemma 6.1. �
Consider a set F in the Baumslag-Solitar group Bp2, 1q. Its boundary is then at least

|δF | ě 2p|V pΓF q| ` opΓF qq.
Therefore ΓF has at most ep|δF |q edges. To each element in F correspond two edges. They are either in
thee graph (where each edge is counted twice) or sticking out of it along an orbit. We obtain

2|F | “ 2|EpΓF q| ` 2opΓF q.
This concludes the proof of Theorem 1.6.

Finally, we consider BSp1, 8q with the standard generating set. The standard Følner set F1 is tx` f :
f P N, 0 ď f ď 7u. It has 8 elements, and |BF | “ 2.8` 2 “ 18. Consider the set F “ tpk, fq : k “ 1 or 2, f P
Z, 0 ď f ď 3u. Similarly, we have |F | “ 8. However, |BF | “ 2.4 ` 2.2 “ 12 ă 18. Therefore the result of
Theorem 1.6 is not true for BSp1, 8q for small enough sets.
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MOTS CL�ES

Marches al�eatoires sur les groupes, bord de Poisson, graphe de Schreier, espace des bouts, groupe F de Thomp-

son, groupes d'hom�eomorphismes projectifs par morceaux, groupes resolubles, groupes localement resolubles,

auto-similarit�e, fonction de Følner, groupe d'allumeur de r�everb�eres, produits en couronnes, produits en cou-

ronnes permutationnels, groupe de Baumslag-Solitar, in�egalit�e de Coulhon et Salo�-Coste, fonction de crois-

sance

R�ESUM�E

On �etudie les marches al�eatoires sur les groupes, et plus g�en�eralement les marches induites par des mesures sur des
groupes. On cherche �a comprendre leur comportement �a l'in�ni, surtout en terme du non-trivialit�e de leur bords de
Poisson. On s'int�eresse en particulier aux sous-groupes de H(Z), y compris le groupe de Thompson F . Le groupe H(Z)
est le groupe des hom�eomorphismes projectifs par morceaux sur les entiers d�e�ni par Monod. Pour un sous-groupe H
de H(Z) de type �ni, on montre que soit H est r�esoluble, soit pour tout mesure sur H dont le premier moment est �ni
et le support engendre H en tant que semi-groupe, le bord de Poisson de la marche al�eatoire sur H est non-trivial. En
particulier, on d�emontre la non-trivialit�e du bord de Poisson des marches al�eatoires sur le groupe de Thompson F pour
les mesures sur F dont le support l'engendre en tant que semi-groupe et qui sont de premier moment �ni. Cela r�eponde
�a une question de Kaimanovich.
Consid�erons une action transitive d'un groupe G de type �ni, et le graphe de Schreier Γ que cette action d�e�nit pour un
ensemble g�en�erateur �x�e. Pour une mesure de probabilit�e µ sur G de premier moment �ni, on prouve que si la marche
al�eatoire induite sur Γ est transiente, alors elle converge vers un bout de Γ. On obtient comme corollaire que pour une
mesure de probabilit�e de premier moment �ni sur le groupe de Thompson F , dont le support engendre F en tant que
semi-groupe, la marche al�eatoire induite sur les nombres dyadiques a un bord de Poisson non-trivial. Il est n�ecessaire
d'avoir une hypoth�ese sur le moment de la mesure d'apr�es un r�esultat de Juscheno et Zheng.

En outre, on calcule les valeurs exactes des fonctions de Følner sur le groupe d'allumeur de r�everb�eres Z o Z/2Z pour

l'ensemble g�en�erateur standard et l'ensemble g�en�erateur ¾switch-walk-switch¿. Les fonctions de Følner encodent les
propri�et�es isop�erim�etriques des groupes moyennables et ont �et�e auparavant �etudi�ees �a �equivalence asymptotique pr�et

(autrement dit, de fa�con ind�ependante du choix d'ensemble g�en�erateur �ni). On obtient aussi une borne inf�erieure pour

les fonctions de Følner d'une classe de produits en couronnes permutationnels (avec certains ensembles g�en�erateurs).

On l'utilise pour construire un exemple de groupe dont la fonction de Følner a la m�eme exponente que sa fonction

de croissance. De plus, on d�emontre un r�esultat isop�erim�etrique par rapport au bord sur les arr�etes sur le groupe de

Baumslag-Solitar BS(1, 2) avec l'ensemble g�en�erateur standard.

ABSTRACT

We study random walks on groups, and more generally walks induced by measures on groups. We seek to understand
their limit behaviour, in particular in terms of whether their Poisson boundary is trivial or not. We are speci�cally
interested in measures on subgroups of H(Z), including Thompson's group F . The group H(Z) is the group of piecewise
projective homeomorphisms over the integers de�ned by Monod. For a �nitely generated subgroup H of H(Z), we
prove that either H is solvable, or for every measure on H with �nite �rst moment and support that generates H as
a semigroup, the random walk on H has non-trivial Poisson boundary. In particular, we prove the non-triviality of
the Poisson boundary of walks on Thompson's group F induced by measures, the support of which generates F as a
semigroup and which have �nite �rst moments. This answers a question by Kaimanovich.
Consider a transitive action of a �nitely generated group G and the Schreier graph Γ de�ned by this action for some
�xed generating set. For a probability measure µ on a group with a �nite �rst moment we show that if the induced
random walk on Γ is transient, it converges towards the space of ends of Γ. As a corollary we obtain that for a probability
measure with a �nite �rst moment on Thompson's group F , the support of which generates F as a semigroup, the
induced random walk on the dyadic numbers has a non-trivial Poisson boundary. Some assumption on the moment of
the measure is necessary as follows from an example by Juschenko and Zheng.

Additionally, we calculate the exact values of the Følner function of the lamplighter group Z o Z/2Z for the standard

and the switch-walk-switch generating sets. Følner functions encode the isoperimetric properties of amenable groups

and have previously been studied up to asymptotic equivalence (that is to say, independently of the choice of �nite

generating set). We also obtain a lower bound for the Følner function for a class of permutational wreath products

(with certain generating sets). We use that bound to construct an example of a group, the Følner function of which

has the same exponent as its growth function. What is more, we prove an isoperimetric result concerning the edge

boundary on the Baumslag-Solitar group BS(1, 2) with the standard generating set.
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